• Title/Summary/Keyword: power and energy consumption

Search Result 2,013, Processing Time 0.039 seconds

A Study on the Advanced Protective Coordination Schemes of 22.9[kV] Distribution System Interconnected New Renewable Energy System (신재생에너지 시스템이 연계된 22.9[kV] 배전계통의 개선된 보호협조 방안 연구)

  • Choi, Dong-Man;Choi, Joon-Ho;Ro, Kyoung-Soo;Moon, Seung-Il;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.426-428
    • /
    • 2005
  • Recently, There has been growing interest in new renewable energy systems with high-energy efficiency due to the increasing energy consumption and environmental pollution problems, but an insertion of new renewable energy systems to existing power distribution systems can cause several problems such as voltage variations, harmonics, protective coordination, increasing fault current etc, because of reverse power. This paper was applied to Sukumar M, Brahma, A. Girgis[1] proposal schemes and identilys the faulted section performing short-circuit analysis by MATLAB programs to 22.9[kV] distribution system interconnected a large number of new renewable energy system and was analyzed on protective coordination between reclose and Sectionalizer.

  • PDF

Study on Energy Independence Plan for Sewage Treatment Plant (하수처리시설의 에너지 자립화 방안 연구)

  • Kim, Young-Jun;Chung, Chul-Kwon;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.15-20
    • /
    • 2008
  • The objectives of this study are to analyze the energy independence plan and to propose a suitable sewage treatment plant in Korea. The total amount of electricity consumption for public sewage treatment plant was estimated as 1,182 GWh in 2007. It was estimated that total 16 sewage treatment plants with renewable energy systems produced electricity of 15.2 GWh per year, which could replaced 0.8% of total electricity used for sewage treatment. It was found that domestic sewage treatment plants with power generation plants by digestion gas were installed in 7 places and produced electricity of 13 GWh per year. It was also found that the power generation plants by digestion gas were the most cost-effective for sewage treatment out of the renewable energy systems based on the benefit-cost analysis.

  • PDF

A Survey of the Transmission-Power-Control Schemes in Wireless Body-Sensor Networks

  • Lee, Woosik;Kim, Heeyoul;Hong, Min;Kang, Min-Goo;Jeong, Seung Ryul;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1854-1868
    • /
    • 2018
  • A wireless body-sensor network (WBSN) refers to a network-configured environment in which sensors are placed on both the inside and outside of the human body. The sensors are much smaller and the energy is more constrained when compared to traditional wireless sensor network (WSN) environments. The critical nature of the energy-constraint issue in WBSN environments has led to numerous studies on the reduction of energy consumption of WBSN sensors. The transmission-power-control (TPC) technique adjusts the transmission-power level (TPL) of sensors in the WBSN and reduces the energy consumption that occurs during communications. To elaborate, when transmission sensors and reception sensors are placed in various parts of the human body, the transmission sensors regularly send sensor data to the reception sensors. As the reception sensors receive data from the transmission sensors, real-time measurements of the received signal-strength indication (RSSI), which is the value that indicates the channel status, are taken to determine the TPL that suits the current-channel status. This TPL information is then sent back to the transmission sensors. The transmission sensors adjust their current TPL based on the TPL that they receive from the reception sensors. The initial TPC algorithm made linear or binary adjustments using only the information of the current-channel status. However, because various data in the WBSN environment can be utilized to create a more efficient TPC algorithm, many different types of TPC algorithms that combine human movements or fuse TPC with other algorithms have emerged. This paper defines and discusses the design and development process of an efficient TPC algorithm for WBSNs. We will describe the WBSN characteristics, model, and closed-loop mechanism, followed by an examination of recent TPC studies.

Electricity Cost Minimization for Delay-tolerant Basestation Powered by Heterogeneous Energy Source

  • Deng, Qingyong;Li, Xueming;Li, Zhetao;Liu, Anfeng;Choi, Young-june
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5712-5728
    • /
    • 2017
  • Recently, there are many studies, that considering green wireless cellular networks, have taken the energy consumption of the base station (BS) into consideration. In this work, we first introduce an energy consumption model of multi-mode sharing BS powered by multiple energy sources including renewable energy, local storage and power grid. Then communication load requests of the BS are transformed to energy demand queues, and battery energy level and worst-case delay constraints are considered into the virtual queue to ensure the network QoS when our objective is to minimize the long term electricity cost of BSs. Lyapunov optimization method is applied to work out the optimization objective without knowing the future information of the communication load, real-time electricity market price and renewable energy availability. Finally, linear programming is used, and the corresponding energy efficient scheduling policy is obtained. The performance analysis of our proposed online algorithm based on real-world traces demonstrates that it can greatly reduce one day's electricity cost of individual BS.

A Slot Scheduling Algorithm for Balancing Power Consumption in Tree-based Sensor Networks (트리 기반 센서네트워크에서 전력 소모 균형을 위한 슬랏 스케쥴링 알고리즘)

  • Kim, Je-Wook;Oh, Roon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.502-510
    • /
    • 2011
  • In this paper, we propose a slot scheduling algorithm for balancing power consumption in tree-based sensor networks. In this type of networks, nodes with lower depths tend to consume more energy than those with higher depths, thereby reducing the life time of the network. The proposed algorithm allocates a series of receiving slots first and then a series of sending slots. This way of slot allocation eases packet aggregation and filtering, and thus reduces traffic load on nodes near a sink. We compare the proposed algorithm and the frame-slot allocation algorithm employed in the TreeMAC by resorting to simulation. The simulation results showed that the proposed approach well achieves the balancing of power consumption.

An Analysis of Electricity Consumption Profile based on Measurement Data in Apartment Complex in Daejeon (대전지역 공동주택의 전력소비 실태 및 패턴 분석 연구)

  • Kim, Kang Sik;Im, Kyung Up;Yoon, Jong Ho;Shin, U Cheul
    • KIEAE Journal
    • /
    • v.11 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • This study is to analysis the characteristics of electric power consumption of apartments complex in Korea. This study shows the pattern of electric power consumption and correlation of each apartment complex's completion year monthly and timely. With this result, we are able to predict the demand pattern of electricity in a house and make the schedule by demand pattern. It is expected this data is used as reference of electric consumption of Daejeon area to operate the simulation tools to predict the building energy. The yearly data of 10 apartment complexes of 2010 are analyzed. The results of this study are followed. The averaged amount of electricity consumption in winter is higher as summer because of the high capacity of heating equipment. All of the house has electric base load from 0.26kWh to 0.5kWh. The average of the electricity consumption of month is shown as 310.2kWh. A week is seperated, as 4 part such as week, weekend, Saturday and Sunday. During week, the average of timely electricity consumption is shown as 0.426kWh. The Saturday consumption is 0.437kWh. The Sunday is 0.445kWh. The peak electricity consumption in summer and winter is measured. The peak consumption on summer season is 1.389kW on 22th August 64% higher than winter season 0.887kW on 3rd January.

A Study on the Evaluation of Water Consumption in Electric Appliances using Water Footprint - Focusing on Washing Machine - (Water Footprint 개념을 이용한 가전제품의 수자원 사용량 산정 (세탁기를 중심으로))

  • Jo, Hyun-Jung;Kim, Woo-Ram;Park, Ji-Hyoung;Hwang, Young-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.5
    • /
    • pp.691-697
    • /
    • 2011
  • In this study, by using the Water footprint technique, the water consumption by washing machines, which holds higher ranks in using water than any other electric appliances, was analyzed during their life cycle. The life cycle is defined as raw materials production step, manufacturing step, and using step. In raw materials production step, Input materials were researched by using LCI DB(Life Cycle Inventory Database) and the water consumption was calculated with consideration of approximately 65% Input materials which were based weight. In manufacturing step, the water consumption was calculated by the amount of energy used in assembly factories and components subcontractors and emission factor of energy. In using step, referring to guidelines on carbon footprint labeling, the life cycle is applied as 5 years for a washing machine and 218 cycles for annual bounds of usage. The water and power consumption for operating was calculated by referring to posted materials on the manufacture's websites. The water consumption by nation unit was calculated with the result of water consumption by a unit of washing machine. As a result, it shows that water consumption per life cycle s 110,105 kg/unit. The water consumption of each step is 90,495 kg/unit for using, 18,603 kg for raw materials production and 1,006 kg/unit for manufacturing, which apparently shows that the using step consume the most water resource. The water consumption by nation unit is 371,269,584tons in total based on 2006, 83,385,649 tons in both steps of raw material production and manufacturing, and 287,883,935 tons in using step.

Design and Implementation of MQTT-based Standby Power Reduction System in Z-Wave Network Environment (Z-Wave 네트워크 환경에서 MQTT 기반 대기전력 절감 시스템 설계 및 구현)

  • Jang, Young-Hwan;Park, Seok-Cheon;Yoon, Seok-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.3
    • /
    • pp.421-429
    • /
    • 2020
  • Recently, with the development of IoT technology and the increase of energy consumption, interest in energy saving and energy efficiency improvement is rapidly increasing. In particular, in the case of a device connected to a power plug with the power shutoff, a problem with standby power has been raised. Thus technology development through a low power method such as Zigbee is in progress. However, Zigbee, which is generally used, has a problem that a separate gateway is required because it is not an IP-based technology, and there is a problem that it is not suitable for a traditional computer network to which a variety of devices are connected. Therefore, in this paper, we designed and implemented a standby power saving system using MQTT, an IoT standard protocol, in Z-Wave environment. In order to evaluate the implemented standby power saving system, the same environment as the existing Zigbee-based standby power saving system was compared and evaluated.

Dynamic Adjustment of Ad hoc Traffic Indication Map(ATIM) window to save Power in IEEE 802.11 DCF

  • Nam, Jae-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.3
    • /
    • pp.343-347
    • /
    • 2008
  • Wakeup schemes that turn off sensors' radio when communication is not necessary have great potential in energy saving. At the start of each beacon interval in the IEEE 802.11 power saving mode specified for DCF, each node periodically wakes up for duration called the ATIM Window. However, in the power saving mechanism specified in IEEE 802.11, all nodes use the same ATIM window size. Since the ATIM window size critically affects throughput and energy consumption, a fixed ATIM window does not perform well in all situations. This paper proposes an adaptive mechanism to dynamically choose an ATIM window size according to network condition. Simulation results show that the proposed scheme outperforms the IEEE 802.11 power saving mechanism in terms of the amount of power consumed and the packet delivery ratio.

Evaluation of Energy Transfer Efficiency of Pneumatic Driving Apparatus (공기압 구동장치의 에너지효율 평가)

  • Jang, J.S.;Ji, S.W.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.95-100
    • /
    • 2011
  • In this study, an evaluation equation of energy efficiency of pneumatic driving apparatus is proposed. The evaluation equation is derived from state equation and energy equation of air in a control volume, and, the equation of motion of a moving part of a pneumatic cylinder. As a result, distribution of consumption energy and energy efficiency of pneumatic driving apparatus can be analyzed quantitatively. The effectiveness of the proposed method is proved by a pneumatic cylinder driving apparatus using a meter-out driving method.