• 제목/요약/키워드: power and energy consumption

Search Result 2,012, Processing Time 0.029 seconds

Decomposition Analysis of Energy Use for Water Supply: From the Water-Energy Nexus Perspective (물 공급을 위한 에너지 사용 요인분해 분석: Water-Energy Nexus 관점에서)

  • Yoo, Jae-Ho;Jo, Yeon Hee;Kim, Hana;Jeon, Eui Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.5
    • /
    • pp.240-246
    • /
    • 2022
  • Water and energy are inextricably linked and referred to as 'Water-Energy Nexus'. Recently, this topic has been drawing a lot of attention from various studies due to the exacerbated water availability. Korea's water and energy consumption has been increasing consistently, which calls for better management. This paper aims to identify changes in electricity consumption in relation to water intake and purification processes. Using Log Mean Divisia Index (LMDI) Decomposition Analysis method, this study attributes the changes to major factors such as; Total population (population effect), household/population (structure effect), GDP/household (economic effect), and water-related energy use/GDP (unit effect). The population effect, structure effect, and economic effect contributed to an increase in water-related electricity consumption, while the unit effect contributed to a decrease. As of 2019, the economic effect increased the water supply sector's electricity consumption by 534 GWh, the population effect increased by 73 GWh, and the structure effect increased by 243 GWh. In contrast, the unit effect decreased the electricity consumption by -461 GWh. We would like to make the following suggestions based on the findings of this study; first, the unit effect must be improved by increasing the energy efficiency of water intake and purification plants and installing renewable energy power generation facilities. Second, the structure effect is expected to increase over time, and to mitigate it, water consumption must be reduced through water conservation policies and the improvement of water facilities. Finally, the findings of this study are expected to be used as foundational data for integrated water and energy management.

Area- and Energy-Efficient Ternary D Flip-Flop Design

  • Taeseong Kim;Sunmean Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.134-138
    • /
    • 2024
  • In this study, we propose a ternary D flip-flop using tristate ternary inverters for an energy-efficient ternary circuit design of sequential logic. The tristate ternary inverter is designed by adding the functionality of the transmission gate to a standard ternary inverter without an additional transistor. The proposed flip-flop uses 18.18% fewer transistors than conventional flip-flops do. To verify the advancement of the proposed circuit, we conducted an HSPICE simulation with CMOS 28 nm technology and 0.9 V supply voltage. The simulation results demonstrate that the proposed flip-flop is better than the conventional flip-flop in terms of energy efficiency. The power consumption and worst delay are improved by 11.34% and 28.22%, respectively. The power-delay product improved by 36.35%. The above simulation results show that the proposed design can expand the Pareto frontier of a ternary flip-flop in terms of energy consumption. We expect that the proposed ternary flip-flop will contribute to the development of energy-efficient sensor systems, such as ternary successive approximation register analog-to-digital converters.

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

An Efficient Game Theory-Based Power Control Algorithm for D2D Communication in 5G Networks

  • Saif, Abdu;Noordin, Kamarul Ariffin bin;Dimyati, Kaharudin;Shah, Nor Shahida Mohd;Al-Gumaei, Yousef Ali;Abdullah, Qazwan;Alezabi, Kamal Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2631-2649
    • /
    • 2021
  • Device-to-Device (D2D) communication is one of the enabling technologies for 5G networks that support proximity-based service (ProSe) for wireless network communications. This paper proposes a power control algorithm based on the Nash equilibrium and game theory to eliminate the interference between the cellular user device and D2D links. This leadsto reliable connectivity with minimal power consumption in wireless communication. The power control in D2D is modeled as a non-cooperative game. Each device is allowed to independently select and transmit its power to maximize (or minimize) user utility. The aim is to guide user devices to converge with the Nash equilibrium by establishing connectivity with network resources. The proposed algorithm with pricing factors is used for power consumption and reduces overall interference of D2Ds communication. The proposed algorithm is evaluated in terms of the energy efficiency of the average power consumption, the number of D2D communication, and the number of iterations. Besides, the algorithm has a relatively fast convergence with the Nash Equilibrium rate. It guarantees that the user devices can achieve their required Quality of Service (QoS) by adjusting the residual cost coefficient and residual energy factor. Simulation results show that the power control shows a significant reduction in power consumption that has been achieved by approximately 20% compared with algorithms in [11].

An Operation Status Analysis of Library Building using BEMS Data; Energy Performance Evaluation on Initial Stage of Completion (BEMS 데이터를 활용한 도서관 건물의 운전현황 분석 -준공 초기단계의 건물 에너지 성능 평가)

  • Park, Seong-cheol;Ha, Ju-wan;Kim, Hwan-yong;Song, Young-hak
    • Journal of Korean Institute of Architectural Sustainable Environment and Building Systems
    • /
    • v.12 no.6
    • /
    • pp.669-679
    • /
    • 2018
  • Energy consumption savings in buildings should be reviewed in diverse areas such as air conditioning system and lighting responsible for cooling and heating, and energy management systems such as BAS (Building Automation System) and BEMS (Building Energy Management System) are introduced to improve energy consumption efficiency and to promote economic control of related facilities by integrated management of energy generated and consumption in buildings. The measured building of this study uses regenerative geothermal system. Measured values of heat pump and system COP were 4.7 and 4.2 respectively, and they were found to be higher 11.9% and 23.5% than rated values. As a result of analyzing the air conditioning and lighting energy from the first floor to the fourth floor performing the air conditioning, the second and third floors, which have a high frequency of use, are compared with the first and fourth floors 50% higher energy consumption ratio. On the other hand, the general heat storage system uses the nighttime power of the previous day to store heat and use it the next day. The total number of days of abnormal operation during the summer season is 61 days. The electricity cost corresponding to the abnormal operation is 1,840,641 KRW, and the normal operation using the nighttime power is 1,363,561 KRW, which is difference of 477,080 KRW, 35% increase in cost. We will utilize it as the main data of BEMS through analysis of winter operation characteristics as well as summer operation characteristics.

A STUDY ON THE PERFORMANCE AND EMISSIONS CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH ETHANOL GASOLINE BLENDED FUEL

  • Han, Sung Bin
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.170-174
    • /
    • 2014
  • This paper presents the influences of ethanol addition to gasoline on bench test a spark ignition engine performances and emissions characteristics. The use of ethanol gasoline blended fuels decrease the brake power and brake torque, and increases the brake specific fuel consumption (BSFC). Ethanol gasoline blended fuels show lower brake torque and brake power and higher BSFC than gasoline. When ethanol containing oxygen is blended with gasoline, the combustion of the engine becomes better and therefore CO emission is reduced. HC emissions decrease to some extent as ethanol added to gasoline increase, as the percentage of ethanol in the blends increased, NOx emission was decreased under various engine speeds.

Effect of Pulp Properties on the Power Consumption in Low Consistency Refining

  • LIU, Huan;DONG, Jixian;QI, Kai;GUO, Xiya;YAN, Ying;QIAO, Lijie;DUAN, Chuanwu;ZHAO, Zhiming
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.869-877
    • /
    • 2020
  • The power consumption in the low consistency (LC) refining is an important indicator for the optimal control of the process and it is composed of the net power and the no-load power. The refining efficiency and process characterization of LC refining are directly affected by power consumption. In this paper, the effect of pulp consistency and average fiber length on the power consumption and refining efficiency were studied through the LC refining trials conducted by an experimental disc refiner. It is found that the curve of power-gap clearance can be divided into constant power section, power reduction section, and power increase section. And the no-load power and the adjustable domain of loading applied by the refining plates will increase as the increase of pulp consistency, while the increase of net power is larger than that of no-load power which makes the increasing of refining efficiency. Meanwhile, the adjustable domain of loading applied by the refining plates can be slightly improved by increasing the average fiber length, but its effect on the no-load power in the LC refining process can be neglected. The study of power consumption in LC refining is of positive significance for the proper selection of pulp properties in LC refining, in-depth exploration of refining mechanism, and energy consumption reduction in refining.

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.

A Study on the Power Consumption and the Generation Efficiency and Load Rate of the Building Integrated Photovoltaic System in University Dormitories (대학교 기숙사의 전력소비량과 BIPV시스템의 발전효율·부하부담율에 관한 연구)

  • Seo, Won-Duck;Lee, Kang-Guk;Hong, Won-Hwa
    • KIEAE Journal
    • /
    • v.11 no.6
    • /
    • pp.87-93
    • /
    • 2011
  • This study examines building's power consumption unit cost and Building Integrated Photovoltaic (BIPV)'s generation efficiency and load rate with the subjects of university dormitory buildings in order to suggest foundational data for new and recycled energy use and management to plan and operate university dormitories afterwards. Thereby, this research gained the following findings. 1. The quantity of solar radiation and efficiency change in the BIPV system applied to the research subject buildings after the lapse of time was averagely 8.7%, and it is thought that temperature increase determines conversion efficiency with the influence of surrounding outside temperature and the module's temperature. 2. The generation efficiency of the BIPV system in the research subject buildings was averagely 10.9%. In May, it was 13.9%, and in January, it was the lowest as 10.25%. Considering the fact that power consumption reduces during an intermediate period, it will be necessary to establish measures for equipment and power consumption load balancing. 3. The monthly load rate of the BIPV system was averagely 4.09%. In May, it was the highest as 4.94%, and in July, it was the lowest as 3.24%. 4. It is intended to conduct constant follow-up research on estimating university dormitory building's power consumption unit cost and examining the generation efficiency and load rate of the BIPV system.

The Analysis of Energy Consumption for an Electric Vehicle under Various Driving Circumstance (준중형급 전기자동차의 주행특성에 따른 에너지 소모량 분석)

  • Lee, Dae-Heung;Seo, Ho-Won;Jeong, Jong-Ryeol;Park, Yeong-Il;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.38-46
    • /
    • 2012
  • This paper discusses the energy consumption for a mid-size electric vehicle(EV) under various conditions. In order to analyze which driving style is more efficient in terms of the system of the EV, we develop the electric vehicle model and apply several types of speed profiles such as different steady speeds, acceleration/deceleration, and a real world driving cycle including the elevation profile obtained from a GPS device. The results show that the energy consumption of the EV is affected by the operating efficiency of components when driving at low speed, while it depends on required power at wheels when driving at high speed. Also this paper investigates the effect of the elevation of a road and the rate of electrical braking on the energy consumption as well as the fuel economy of a conventional vehicle model under the same conditions.