• Title/Summary/Keyword: power and/or spectral efficiency

Search Result 32, Processing Time 0.028 seconds

Evolutionary game theory-based power control for uplink NOMA

  • Riaz, Sidra;Kim, Jihwan;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2697-2710
    • /
    • 2018
  • Owing to the development of Internet of Things (IoT), the fifth-generation (5G) wireless communication is going to foresee a substantial increase of mobile traffic demand. Energy efficiency and spectral efficiency are the challenges in a 5G network. Non-orthogonal multiple access (NOMA) is a promising technique to increase the system efficiency by adaptive power control (PC) in a 5G network. This paper proposes an efficient PC scheme based on evolutionary game theory (EGT) model for uplink power-domain NOMA system. The proposed PC scheme allows users to adaptively adjusts their transmit power level in order to improve their payoffs or throughput which results in an increase of the system efficiency. In order to separate the user signals, a successive interference cancellation (SIC) receiver installed at the base station (BS) site. The simulation results demonstrate that the proposed EGT-based PC scheme outperforms the traditional game theory-based PC schemes and orthogonal multiple access (OMA) in terms of energy efficiency and spectral efficiency.

Damage assessment of shear connectors with vibration measurements and power spectral density transmissibility

  • Li, Jun;Hao, Hong;Xia, Yong;Zhu, Hong-Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.2
    • /
    • pp.257-289
    • /
    • 2015
  • Shear connectors are generally used to link the slab and girders together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girders, which significantly reduces the load-carrying capacity of the bridge. Because shear connectors are buried inside the structure, routine visual inspection is not able to detect conditions of shear connectors. A few methods have been proposed in the literature to detect the condition of shear connectors based on vibration measurements. This paper proposes a different dynamic condition assessment approach to identify the damage of shear connectors in slab-on-girder bridge structures based on power spectral density transmissibility (PSDT). PSDT formulates the relationship between the auto-spectral densities of two responses in the frequency domain. It can be used to identify shear connector conditions with or without reference data of the undamaged structure (or the baseline). Measured impact force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at sensor locations by experimental modal analysis. PSDT from the slab response to the girder response is derived with the obtained frequency response functions. PSDT vectors in the undamaged and damaged states can be compared to identify the damage of shear connectors. When the baseline is not available, as in most practical cases, PSDT vectors from the measured response at a reference sensor to those of the slab and girder in the damaged state can be used to detect the damage of shear connectors. Numerical and experimental studies on a concrete slab supported by two steel girders are conducted to investigate the accuracy and efficiency of the proposed approach. Identification results demonstrate that damages of shear connectors are identified accurately and efficiently with and without the baseline. The proposed method is also used to evaluate the conditions of shear connectors in a real composite bridge with in-field testing data.

Multi-Sequence Signaling Based Asynchronous Trellis-Coded DS/CDMA System (다중 시퀀스 시그날링에 기초한 비동기 트레리스 부호화 DS/CDMA 시스템)

  • Sangho Choe
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.248-256
    • /
    • 2004
  • Woerner had suggested an asynchronous trellis-coded DS/CDMA system based on a multi-sequence signaling, biorthogonal sequence, which is superior to single sequence signaling, such as M-ary PSK, due to their better cross-correlation properties. This paper analyzes and compares system performance between OPSM, a recently-presented multi-sequence signaling scheme, and biorthogonal sequence signaling. Interuser interference moments of the two schemes are derived and compared which verifies that OPSM, having smaller signature sequences per symbol than biorthogonal signaling, reduces cross-correlation. Numerical results compare the power and spectral efficiency of asynchronous trellis-coded DS/CDMA systems based on multi-sequence signaling.

Analysis of Joint Transmit and Receive Antenna Selection in CPM MIMO Systems

  • Lei, Guowei;Liu, Yuanan;Xiao, Xuefang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.3
    • /
    • pp.1425-1440
    • /
    • 2017
  • In wireless communications, antenna selection (AS) is a widely used method for reducing comparable cost of multiple RF chains in MIMO systems. As is well known, most of literatures on combining AS with MIMO techniques concern linear modulations such as phase shift keying (PSK) and quadrature amplitude modulation (QAM). The combination of CPM and MIMO has been considered an optimal choice that can improve its capacity without loss of power and spectrum efficiency. The aim of this paper is to investigate joint transmit and receive antenna selection (JTRAS) in CPM MIMO systems. Specifically, modified incremental and decremental JTRAS algorithms are proposed to adapt to arbitrary number of selected transmit or receive antennas. The computational complexity of several JTRAS algorithms is analyzed from the perspective of channel capacity. As a comparison, the performances of bit error rate (BER) and spectral efficiency are evaluated via simulations. Moreover, computational complexity of the JTRAS algorithms is simulated in the end. It is inferred from discussions that both incremental JTRAS and decremental JTRAS perform close to optimal JTRAS in BER and spectral efficiency. In the sense of practical scenarios, adaptive JTRAS can be employed to well tradeoff performance and computational complexity.

High-Efficiency Dye-Sensitized Solar Cells by Extended Spectral Response Utilizing Dye Selective Positioning Method

  • Lee, Do-Gwon;Park, Se-Ung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12.1-12.1
    • /
    • 2010
  • We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO2 layer through selective desorption and adsorption processes. Only upper part of the first adsorbed N719 dye was selectively removed by the desorption solution formulated with polypropylene glycol and tetrabutylammonium hydroxide without any damages of the dye. The desorption depth was controlled by the number of desorption process. Multi-dyed dye-sensitized solar cells (MDSSC) were fabricated by utilizing the method and their photovoltaic properties were investigated. From the incident photon-to-current conversion efficiency (IPCE) measurement, it was found that the MDSSC exhibited the extended spectral response for the solar spectrum while without decrease of maximum IPCE value compare to the DSSCs using one kind of dye (N719 or N749). The highest photocurrent density of 19.3 mA/cm2 was obtained from the MDSSC utilizing $15\;{\mu}m$ N719 / $14\;{\mu}m$ N749 bi-layered mesoporous TiO2 film. The photocurrent density was 25% and 8% higher than that of the DSSC using only N719 and N749 dye as a sensitizer, respectively. The power conversion efficiency of 9.8% was achieved from the MDSSC under the AM 1.5G one sun illumination.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

Input Sequence Selection and Lookup Table for PAPR Reduction in OFDM Systems

  • Foomooljaroen, P.;Fernando, W.A.C.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1928-1931
    • /
    • 2002
  • Orthogonal Frequency Division Multiplexing or OFDM is a form of multi-carrier modulation technique. High spectral efficiency, robustness to channel fading, immunity to impulse interference, uniform average spectral density, capability of handling very strong echoes and less on linear distortion are among the favorite properties of OFDM. Even though there are many advantages of OFDM, t has two main drawbacks: high Peak to Average Power Ratio (PAPR) and frequency of offset. In this paper, the issue of PAPR in OFDM is discussed. A new algorithm is proposed to reduce PAPR by selecting the input sequences property using a lookup table.

  • PDF

Optimal Chip Rate of Power and Rate Adapted DS/CDMA Communication Systems in Nakagami Fading Channels (나카가미 페이딩 채널에서 전력 및 전송률 적응화 직접 대역확산 부호분할 다중접속 통신시스템을 위한 최적 칩률에 관한 연구)

  • Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.128-133
    • /
    • 2010
  • We investigate the optimal chip rate of power or rate adapted direct-sequence code division multiple access (DS/CDMA) communication systems in Nakagami fading channels. We find that the optimal chip rate that maximizes the spectral efficiency depends upon both the channel parameters, such as multipath intensity profile (MIP) and line-of-sight (LOS) component, and the adaptation scheme itself. With the rate adaptation, the optimal chip rate is less than $1/T_m$, irrespective of the channel parameters, where $1/T_m$ is multipath delay spread. This indicates that with the rate adaptation, correlation receiver achieves higher spectral efficiency than RAKE receiver. With the power adaptation, however, the optimal chip rate and the corresponding number of tabs in RAKE receiver are sensitive to MIP and LOS component.

Time-Division-Multiplexing Tertiary Offset Carrier Modulation for GNSS

  • Cho, Sangjae;Kim, Taeseon;Kong, Seung-Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.3
    • /
    • pp.147-156
    • /
    • 2022
  • In this paper, we propose Time-Division-Multiplexing Tertiary Offset Carrier (TDMTOC), a novel GNSS modulation based on Tertiary Offset Carrier (TOC) modulation. The TDMTOC modulation multiplexes two three-level signals (i.e., -1, 0, and 1) while crossing over time, and is a type of TOC modulation designed specifically for signal multiplexing. The proposed modulation generates TDMTOC subcarriers of two different phases by simply combining two Binary Offset Carrier (BOC) subcarriers by addition or subtraction. TDMTOC has better correlation and spectral properties than conventional BPSK, BOC, and MBOC modulation techniques, and has good power and spectral efficiency since it can multiplex signals without power loss similar to time division multiplexing. To prove this, we introduce the multiplexing process of TDMTOC, and compare TDMTOC with Binary Phase Shift Keying (BPSK), BOC, Composite BOC (CBOC), and Time Multiplexed BOC (TMBOC) that are currently serviced in GNSS by simulations of various aspects. Through the simulation results, we prove that TDMTOC has better correlation property than modulations currently used in GNSS, less intersystem interference due to its wide spectrum property, and robustness in multipath and noise channel environments.

Damage detection on output-only monitoring of dynamic curvature in composite decks

  • Domaneschi, M.;Sigurdardottir, D.;Glisic, B.
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • Installation of sensors networks for continuous in-service monitoring of structures and their efficiency conditions is a current research trend of paramount interest. On-line monitoring systems could be strategically useful for road infrastructures, which are expected to perform efficiently and be self-diagnostic, also in emergency scenarios. This work researches damage detection in composite concrete-steel structures that are typical for highway overpasses and bridges. The techniques herein proposed assume that typical damage in the deck occurs in form of delamination and cracking, and that it affects the peak power spectral density of dynamic curvature. The investigation is performed by combining results of measurements collected by long-gauge fiber optic strain sensors installed on monitored structure and a statistic approach. A finite element model has been also prepared and validated for deepening peculiar aspects of the investigation and the availability of the method. The proposed method for real time applications is able to detect a documented unusual behavior (e.g., damage or deterioration) through long-gauge fiber optic strain sensors measurements and a probabilistic study of the dynamic curvature power spectral density.