• Title/Summary/Keyword: powder of fine

Search Result 1,185, Processing Time 0.033 seconds

Influence of Replacement Ratio of Wasted Refractory Powder on the Properties of Mortar using Blast Furnace Slag and Recycled Aaggregate (폐내화물 미분말 치환율이 고로슬래그 미분말과 순환골재 사용 모르타르의 품질에 미치는 영향)

  • Song, Yuan-Lou;Baek, Cheol;Kim, Min-Sang;Lee, Jea-Hyeon;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.38-39
    • /
    • 2016
  • In this research, the possibility of wasted refractory powder pulverized from refractory block as an expansive admixture and additional alkaline stimulant for class two and three blast furnace slag cements (BSC) was assessed with its high content of free CaO or free MgO. As the replacement ratios of wasted refractory powder and blast furnace slag were increased, flow and air content were decreased, while unit volume weight was increased under same conditions. Compressive strength of mortar was increased with increased replacement ratio of wasted refractory powder, especially, in the case of class three BSC, the highest compressive strength was obtained when wasted refractory powder was replaced 10 %.

  • PDF

Microstructures and Heat-treatment of Sintered Steels Using Iron Powder Coated with 0.45% Phosphorus (0.45%인(P)이 피복된 철분말 소결강의 조직 및 열처리)

  • 정재우
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 1994
  • Commercial pure iron powder and iron powder of coated 0.45% phosphorus were mixed with graphite powder in dry mixer to control carbon content from 0 wt% to 0.8 wt%. Mixed powder was pressed in the mould under the pressure of 510 MPa. Compacts were sintered at 118$0^{\circ}C$ for 40 min. in cracked ammonia gaseous atmosphere. Some of these sintered specimens were quenched in oil, and tempered in Ar gas. All of these specimens were investigated for microstructure, density and hardness in relation to coated phosphorus and carbon content. The results obtained were as follows: (1) The microstructure of the sintered speciments revealed that the amount of pearlite was increased with increasing C content but decreased by P-addition. (2) The P-addition affected the microstructure of pores in which the pore shape became round and its mean size was decreased by P-addition. (3) After tempering of sintered specimens the structure of pearlite was changed from fine structure to coarse one in P added specimen. (4) Hardness was higher in P added specimens.

  • PDF

Physical Properties of Fine Dust Adsorption Matrix using Powder Activate Carbon (분말활성탄을 활용한 미세먼지 흡착형 경화체의 물리적 특성)

  • Lee, Won-Gyu;Kim, Yeon-Ho;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.172-173
    • /
    • 2019
  • As the damage to fine dust increased, the Republic of Korea designated fine dust as a social disaster. The composition of the fine dust is composed of carbon, sulfate, nitrate, ammonium and minerals. The cause of fine dust is naturally generated by dirt, pollen, etc. In addition, there are artificial causes such as gaseous vehicle exhaust gas emitted from the use of fossil fuel. When fine dust enters the human body through breathing, it causes various respiratory diseases and skin diseases. In IARC, fine dust was designated as a carcinogen group 1. In this research, we tried to adsorb fine dust by physical adsorption using powdered activate carbon. Powdered activate carbon is a powdered activated carbon activated in a carbonized state. Porous material with high specific surface area and low density. Experimental items were tested for density, water absorption, and fine dust concentration according to the PAC addition ratio. Basic experiments were carried out to fabricate the fine dust adsorption matrix.

  • PDF

Physicochemical Properties of Jadeite Powder and Its Application to Cosmetic Formulations (경옥가루의 물리화학적 특성 및 화장품 제형 응용 연구)

  • Kim, Kyoung Mi;Kim, Yong Woo;Hong, In Gi;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.81-96
    • /
    • 2018
  • In this study, physicochemical properties of the natural jadeite powder were investigated and also the wash-off pack and liquid foundation containing the jadeite powder were prepared. In addition, each of these formulations was evaluated by various functional effects, sensory evaluation, stability and skin safety. In the wash-off pack, the far-infrared ray emissivity and radiation energy values increased as a function of the jadeite powder content. At a 3% jadeite powder content, the skin temperature increased by about $0.5^{\circ}C$ when the jadeite powder-containing formulation was applied to the skin. Besides, the chroma of the liquid foundation containing the jadeite powder more clearly expressed the original color of the skin. Moisture content measurements of the wash-off pack and liquid foundation containing the jadeite powder showed the highest moisture uptake of 5.0% and 63.0%, respectively. In sensorial test, the wash-off pack formulations containing the jadeite powder demonstrated improved affinities toward a skin, adherency, and moistness and combatted itching. The liquid foundation containing jadeite powder showed also improved affinities except for the coverage when compared to control formulations. Furthermore, the stability evaluation for 8 weeks revealed neither discoloration nor separation phenomenon for the formulations containing the jadeite powder. Moreover, the pH was found to be stable up to 8 weeks and the viscosity up to 4 weeks. Skin safety assessments showed that all formulations containing the jadeite powder were non-irritating. These results suggest that the jadeite powder as an inorganic pigment may serve as a new multi-functional cosmetic ingredient with stability and safety.

Photolithographic Properties of Photosensitive Ag Paste for Low Temperature Cofiring (저온동시소성용 감광성 은(Ag)페이스트의 광식각 특성)

  • Park, Seong-Dae;Kang, Na-Min;Lim, Jin-Kyu;Kim, Dong-Kook;Kang, Nam-Kee;Park, Jong-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.4
    • /
    • pp.313-322
    • /
    • 2004
  • Thick film photolithography is a new technology in that the lithography process such as exposure and development is applied to the conventional thick film process including screen-printing. In this research, low-temperature cofireable silver paste, which enabled the formation of thick film fine-line using photolithographic technology, was developed. The optimum composition for fine-line forming was studied by adjusting the amounts of silver powder, polymer and monomer, and the additional amount of photoinitiator, and then the effect of processing parameter such as exposing dose on the formation of fine-line was also tested. As the result, it was found that the ratio of polymer to monomer, silver powder loading, and the amount of photoinitiator were the main factors affecting the resolution of fine-line. The developed photosensitive silver paste was printed on low-temperature cofireable green sheet, then dried, exposed, developed in aqueous process, laminated, and fired. Results showed that the thick film fine-line under 20$\mu\textrm{m}$ width could be obtained after cofiring.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.

Preparation of Alumina Coated Zirconia Powder by Hydrolysis of Aluminum Butoxide (가수분해법에 의한 알루미나 코팅 지르코니아 분말의 제조)

  • Lee, Jong-Kook;Kim, Yoon-Soo;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1401-1407
    • /
    • 1995
  • Zirconia powder coated with alumina was prepared by hydrolysis of alumina butoxide. The coated powder was obtained by a hydrolysis reaction between the adsorbed water on the surface of zirconia particles and aluminum sec-butoxide. Amorphous aluminum hydroxide was uniformly coated on the surface of zirconia particles with the thickness of about 30 nm. The shape and distribution of aluminum hydroxide was varied with an existence of surfactant. The coated layer of aluminum hydroxide consists of the fine particle size, and the zirconia powder coated by alumina hydroxide have the large specific surface area of 120 $m^2$/g, compared with that of starting zirconia powder.

  • PDF

Development of the Copper Core Balls Electroplated with the Solder of Sn-Ag-Cu

  • Imae, Shinya;Sugitani, Yuji;Nishida, Motonori;kajita, Osamu;Takeuchi, Takao
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1207-1208
    • /
    • 2006
  • We developed the copper core ball electroplated with Sn-Ag-Cu of the eutectic composition which used mostly as Pb free solder ball with high reliability. In order to search for the practicality of this developed copper core ball, the evaluation was executed by measuring the initial joint strength of the sample mounted on the substrate and reflowed and by measuring the joint strength of the sample after the high temperature leaving test and the constant temperature and the humidity leaving test. This evaluation was compered with those of the usual other copper core balls electroplated with (Sn,Sn-Ag,Sn-Cu,Sn-Bi) and the Sn-Ag-Cu solder ball.

  • PDF

Effects of the Powder Agglomeration on Vibrating Minimum Ignition Energy Measurement System for Powder (진동형 분진 최소착화에너지측정장치에서 분진 응집현상이 미치는 영향)

  • ;;;;;;M. Yamaguma;T. Kodama;W.L.Cheung
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.48-53
    • /
    • 1999
  • It is widely recognized that Hartmann tube for measuring the minimum ignition energy(MIE) of powder. But It requires long time and operational skills for measuring. As a variety of new fine powders are being produced day by day in industry, Japen has been developing a measurement system which employs a new method to create a dust/air mixture in a miniature combustion box. In this system, by vibration, the powder is successively fed downward through a hopper made up of metal mesh, and then it is formed into a thin, certain-like, dust/air mixture. With this new apparatus, three types of powder-Lycopodium, Anthraquinone, and Polyacry-lonitrile-were tested and the data of MIE were compared with those of a conventional apparatus (the Hartmann tube). Two of them agreed satisfactory, but the other, Anthraquinone, showed quite different values. It is guessed that the agglomerations of the powder particles appear because of particle shapes, static-charge and humidity.

  • PDF