• Title/Summary/Keyword: powder mixture

Search Result 1,164, Processing Time 0.371 seconds

Preparation of Bi-materials by Powder Metallurgy Method (분말야금법을 이용한 Bi-materials의 제조)

  • Lee In-Gyu;Lee Kwang-Sik;Chang Si-Young
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property (W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성)

  • Oh, Gyu-Sang;Lee, Sung-Min;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.27 no.4
    • /
    • pp.293-299
    • /
    • 2020
  • W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

Fabrication of Fe-TiC Composite Powder by High-Energy Milling and Subsequent Reaction Synthesis (고에너지 밀링 및 합성반응에 의한 Fe-TiC 복합분말 제조)

  • Ahn, Ki-Bong;Lee, Byung-Hun;Lee, Young-Hee;Khoa, Hyunh Xuan;Kim, Ji-Soon
    • Journal of Powder Materials
    • /
    • v.20 no.1
    • /
    • pp.53-59
    • /
    • 2013
  • Fe-TiC composite powder was fabricated via two steps. The first step was a high-energy milling of FeO and carbon powders followed by heat treatment for reduction to obtain a (Fe+C) powder mixture. The optimal condition for high-energy milling was 500 rpm for 1h, which had been determined by a series of preliminary experiment. Reduction heat-treatment was carried out at $900^{\circ}C$ for 1h in flowing argon gas atmosphere. Reduced powder mixture was investigated by X-ray Diffraction (XRD), Field Emission-Scanning Electron Microscopy (FE-SEM) and Laser Particle Size Analyser (LPSA). The second step was a high-energy milling of (Fe+C) powder mixture and additional $TiH_2$ powder, and subsequent in-situ synthesis of TiC particulate in Fe matrix through a reaction of carbon and Ti. High-energy milling was carried out at 500 rpm for 1 h. Heat treatment for reaction synthesis was carried out at $1000{\sim}1200^{\circ}C$ for 1 h in flowing argon gas atmosphere. X-ray diffraction (XRD) results of the fabricated Fe-TiC composite powder showed that only TiC and Fe phases exist. Results from FE-SEM observation and Energy-Dispersive X-ray Spectros-copy (EDS) revealed that TiC phase exists uniformly dispersed in the Fe matrix in a form of particulate with a size of submicron.

Pharmacokinetics and Pharmacodynamics Following Oral Administration of Pimobendan-Pentoxifylline Powder Formulation Mixture in Dogs (개에서 피모벤단-펜톡시필린 분말 제형 합제의 경구투여시 약물약동학 및 약물약력학에 대한 연구)

  • Ro, Woong-bin;Song, Doo-won;Kang, Yeo-lim;Park, You-jin;Yoo, Cho-rong;Lee, Jong-ho;Kim, Ki-hun;Jeong, Sang-hee;Kang, Min-hee
    • Journal of Veterinary Clinics
    • /
    • v.36 no.1
    • /
    • pp.46-52
    • /
    • 2019
  • Pimobendan has inotropic and vasodilating effects on cardiovascular system, and pentoxifylline is known to decrease blood viscosity and improve blood flow to the heart. This study investigated the pharmacokinetics and pharmacodynamics following oral administration of pimobendan-pentoxifylline powder mixture in dogs. Eight healthy dogs were included and were divided into control (n = 4) and experimental (n = 4) groups. Vehicle powder and pimobendan-pentoxifylline powder mixture (pimobendane 0.25 mg/kg, pentoxifylline 15 mg/kg) were administrated orally to control and experimental groups, respectively. Plasma samples and measurement of echocardiographic indices were obtained for 24 hours following administration. Pimobendan and pentoxifylline concentrations were investigated using liquid chromatography-mass spectrometer (LC-MS) assay. The elimination half-life ($T_{1/2}$) were $2.65{\pm}1.42hours$ for pimobendan and $0.29{\pm}0.23hours$ for pentoxifylline. The time to reach maximum concentration ($T_{max}$) were $1.08{\pm}0.72hours$ for pimobendan and $0.29{\pm}0.14hours$ for pentoxifylline. The maximum blood concentration ($C_{max}$) were $2.83{\pm}1.50ng/mL$ for pimobendan and $1184.33{\pm}932.37ng/mL$ for pentoxifylline. Among echocardiographic indices, fractional shortening (FS), left ventricular internal diameter at end systole (LVIDs), and pre-ejection period (PEP) showed significant changes at 1-4 hours after the administration of pimobendan-pentoxifylline powder mixture. No adverse effects were observed during the investigation. This study demonstrates that pimobendan-pentoxifylline powder mixture can be used to control cardiovascular diseases in dogs.

Microstructures and Texture of Al/Al2O3 Composites Fabricated by a Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조한 Al/Al2O3 복합재료의 미세조직 및 집합조직)

  • 이성희;이충효
    • Journal of Powder Materials
    • /
    • v.10 no.2
    • /
    • pp.103-107
    • /
    • 2003
  • Aluminum-based $Al/Al_2O_3$ composites were fabricated by a powder-in sheath rolling method. A stainless steel tube with outer diameter of 12 mm and wall thickness of 1 mm was used as a sheath. A mixture of aluminum powder and $Al_2O_3$ particles of which volume content was varied from 5 to 20%, was filled in the tube by tap filling and then rolled by 75% reduction in thickness at ambient temperature. The rolled specimen was then sintered at 56$0^{\circ}C$ for 0.5 h. The mixture of Al powders and $Al_2O_3$ particles was successfully consolidated by the sheath rolling. The $Al/Al_2O_3$ composite fabricated by the sheath rolling showed a recrystallized structure, while unreinforced Al powder compact fabricated by the same procedure showed a deformed structure. The unreinforced Al powder compact was characterized by a deformation (rolling) texture of which main component is {112}<111>, while the $Al/Al_2O_3$ composite showed a mixed texture oi deformation and recrystallization. The sintering resulted in recrystallization in Al powder compact and grain growth in the composite.

Warm Compaction of Fe-Si/Fe Powder Mixture and its Magnetic Property (Fe-Si/Fe 혼합분말의 온간성형 및 자성특성)

  • Kim, Se-Hoon;Suk, Myung-Jin;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.249-253
    • /
    • 2009
  • 3-D shape soft magnetic composite parts can be formed by general compaction method of powder metallurgy. In this study, the results on the high density nanostructured Fe-Si/Fe composite prepared by a warm compaction method were presented. Ball-milled Fe-25 wt.%Si powder, pure Fe powder and Si-polymer were mixed and then the powder mixture was compacted at various temperatures and pressures. Pore free density of samples up to 95% theoretical value has been obtained. The warm compacted sample prepared at 650 MPa and 240$^{\circ}C$ had highest compaction properties in comparison with other compacts prepared at 300, 400 MPa and room temperature and 120$^{\circ}C$. The magnetic properties such as core loss, magnetization saturation and coercivity were measured by B-H curve analyzer and vibration sample magnetometer.

Effect of Degrees of Powder Mixing on the Synthesis of $Ti_3Si$ and $TiSi_2$ by Mechanical Alloying (기계적 합금화시 $Ti_3Si$$TiSi_2$ 합성에 미치는 분말 혼합도의 영향)

  • 변창섭
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.103-110
    • /
    • 1999
  • Different sizes of Si powder and milling medium materials (steel and partially stabilized zirconia (PSZ)) were used to synthesize $Ti_3Si$ and $TiSi_2$ by mechanical aollying (MA) of Ti-25.0.at.%Si and Ti-66.7at.% Si powder mixtures. the formation of each titanium silicide did not occur even after 360 min of MA of as-re-ceived Si and Ti powder mixtures due to the lack of homogeneity. $Ti_3Si$, however, was synthesized after 240 min of MA of Ti and 60 min-premilled Si powder mixture. ${\alpha}-TiSi_2$ and $TiSi_2$ were produced by jar milling of Ti and 60 min-premilled Si powder mixture for 48 hr and high -energy PSZ ball-milling in a steel vial for 360 min. The formation of each titanium silicide was characterized by a slow reaction rate as the reactants and product(s) coexisted for a certain period of time. The formation of $Ti_3Si$ and $TiSi_2$ and the reaction rates appeared to be influenced by the Si particle size, the homogeneity of the powder mixtures and the milling medium materials.

  • PDF

The Oxidation and Sintering of $Al-Al_2O_3$ Powder Mixture by using Microwave (Hybrid) Heating (마이크로파 혼합 가열에 의한 $Al-Al_2O_3$ 분말성형체의 산화와 소결)

  • 박정현;안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.3
    • /
    • pp.331-340
    • /
    • 1995
  • Microwave (Hybrid) Heating (MHH) was used to oxidize and sinter Al-Al2O3 powder mixture. For 25 v/o Al specimen and 35 v/o Al specimen, the total processing to produce low-shrinkage reaction bonded alumina was carried out within 1 hour even though conventional furnace process took more than 10 hours. Compared with conventional fast firing process, MHH process increased more than 40% oxidation at the same temperature, and these high oxidation rates were thought to be caused by the surface ohmic current on Al particles.

  • PDF

The Sialon Synthesis from Natural Silica and Al Powder Mixture by Using Home-style Microwave Oven (가정용 전자렌지를 사용한 천연규석분말과 Al분말 성형체로부터 사이알론상 합성에 관한 연구)

  • 안주삼
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • In home-style microwave oven, silica-Al powder mixture was ignited among pellets and combustion wave-front propagated to produce Si+AIN+Al2O3 as resultant phases under N2 atmosphere. Without cooling pro-cedure the resultant phases of Si+AIN+Al2O3 continously absorbed microwave and were heated to be syn-thesized into sialon phases. This synthesis rate of sialon phases from silica-Al powder mixture in home-style microwave oven was higher than that in conventional furnace, and total processing time was around 1 hour, which could save energy and cost.

  • PDF

Study on the Boriding of Steel in Ferroboron and NaBF4 Powder Mixture (훼로보론과 NaBF4 에 의한 강재의 침 경화처리에 관하여)

  • 김문일;여운관
    • Journal of the Korean institute of surface engineering
    • /
    • v.8 no.3
    • /
    • pp.5-11
    • /
    • 1975
  • The boronizing method using ferroborn and NaBF4 powder mixture was studied for surface hardening of medium carbon steel. This boride layer was compared with a boride layer that was formed in ferroboron and KBF4 powder mixture. The frequency factor and activation energy were discussed in this paper. The main results obtained can be summerized as follow. 1) The optimum range of NaBF4 content is 10 to 15% of weight to obtain a thick and dense boride layer. 2) The depth of the boride layer was approximately expressed by the following equation : {{{{d=100 exp (-18,000/RT) SQRT { t} }} 3) The oxidating resistance of boronized steel proved to be good at 800$^{\circ}C$ but almost unacceptable near at 900 $^{\circ}C$. 4) The NaBF4 effect was the same as that reported for KBF4.

  • PDF