• 제목/요약/키워드: powder metallurgy applications

검색결과 209건 처리시간 0.024초

Nb-T2 합금의 파쇄분말을 사용한 Nb-Si-B계 합금의 제조 (Fabrication of Nb-Si-B Alloys Using the Pulverized Nb-T2 Alloy Powder)

  • 조민호;김성준;강현지;오승탁;김영도;이성;석명진
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.299-304
    • /
    • 2019
  • Nb-Si-B alloys with Nb-rich compositions are fabricated by spark plasma sintering for high-temperature structural applications. Three compositions are selected: 75 at% Nb (Nb0.7), 82 at% Nb (Nb1.5), and 88 at% Nb (Nb3), the atomic ratio of Si to B being 2. The microstructures of the prepared alloys are composed of Nb and $T_2$ phases. The $T_2$ phase is an intermetallic compound with a stoichiometry of $Nb_5Si_{3-x}B_x$ ($0{\leq}x{\leq}2$). In some previous studies, Nb-Si-B alloys have been prepared by spark plasma sintering (SPS) using Nb and $T_2$ powders (SPS 1). In the present work, the same alloys are prepared by the SPS process (SPS 2) using Nb powders and hypereutectic alloy powders with composition 67at%Nb-22at%Si-11at%B (Nb67). The Nb67 alloy powders comprise $T_2$ and eutectic ($T_2+Nb$) phases. The microstructures and hardness of the samples prepared in the present work have been compared with those previously reported; the samples prepared in this study exhibit finer and more uniform microstructures and higher hardness.

초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동 (Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process)

  • 송준우;한준희;김송이;석진우;김효섭
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

반응표면모델을 통한 적층제조된 ZrH2 접종제 첨가AA7075 합금의 균열 밀도 예측 (Prediction of Crack Density in additive manufactured AA7075 Alloy Reinforced with ZrH2 inoculant via Response Surface Method)

  • 이정아;최중호;김형섭
    • 한국분말재료학회지
    • /
    • 제30권3호
    • /
    • pp.203-209
    • /
    • 2023
  • Aluminum alloy-based additive manufacturing (AM) has emerged as a popular manufacturing process for the fabrication of complex parts in the automotive and aerospace industries. The addition of an inoculant to aluminum alloy powder has been demonstrated to effectively reduce cracking by promoting the formation of equiaxed grains. However, the optimization of the AM process parameters remains challenging owing to their variability. In this study, the response surface methodology (RSM) was used to predict the crack density of AM-processed Al alloy samples. RSM was performed by setting the process parameters and equiaxed grain ratio, which influence crack propagation, as independent variables and designating crack density as a response variable. The RSM-based quadratic polynomial models for crack-density prediction were found to be highly accurate. The relationship among the process parameters, crack density, and equiaxed grain fraction was also investigated using RSM. The findings of this study highlight the efficacy of RSM as a reliable approach for optimizing the properties of AM-processed parts with limited experimental data. These results can contribute to the development of robust AM processing strategies for the fabrication of high-quality Al alloy components for various applications.

Surface Wear Monitoring with a Non-Vibrating Capacitance Probe

  • Zanoria, E.S.;Hamall, K.;Danyluk, S.;Zharin, A.L.
    • Tribology and Lubricants
    • /
    • 제11권5호
    • /
    • pp.40-46
    • /
    • 1995
  • This study concerns the design and development of the non-vibrating capacitance probe which could be used as a non-contact sensor for tribological wear. This device detects surface charge through temporal variation in the work function of a material. Experiments are performed to demonstrate the operation of the probe on a roating aluminum shaft. The reference electrode of the probe, made of lead, is placed adjacent (< 1.25-mm distance) to the shaft. Both surfaces which are electrically connected, form a capacitor. An artificial spatial variation in the work function is imposed on the shaft surface by coating a segment along the shaft circumference with a colloidal silver paint. As the shaft rotates, the reference electode senses changing contact potential difference with the shaft surface, owing to compositional variation. Temporal variation in the contact potential difference induces a current through the electrical connection. This current is amplified and converted to a voltage signal by an electoronic circuit with an operational amplifier. The magnitude of the signal decreases asymptotically with the electrode-shaft distance and increases linearly with the rotational frequency. These results are consistent with the theoretical model. Potential applications of the probe on wear monitoring are proposed.

선택적 레이저 조형된 AlSi10Mg합금의 후열처리에 따른 Si-rich상 형상변화가 기계적 특성에 미치는 영향 (Influence of Si-rich Phase Morphologies on Mechanical Properties of AlSi10Mg Alloys processed by Selective Laser Melting and Post-Heat Treatment)

  • 남정우;엄영성;김경태;손인준
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.134-142
    • /
    • 2021
  • In this study, AlSi10Mg powders with average diameters of 44 ㎛ are additively manufactured into bulk samples using a selective laser melting (SLM) process. Post-heat treatment to reduce residual stress in the as-synthesized sample is performed at different temperatures. From the results of a tensile test, as the heat-treatment temperature increases from 270 to 320℃, strength decreases while elongation significantly increases up to 13% at 320℃. The microstructures and tensile properties of the two heat-treated samples at 290 and 320℃, respectively, are characterized and compared to those of the as-synthesized samples. Interestingly, the Si-rich phases that network in the as-synthesized state are discontinuously separated, and the size of the particle-shaped Si phases becomes large and spherical as the heat-treatment temperature increases. Due to these morphological changes of Si-rich phases, the reduction in tensile strengths and increase in elongations, respectively, can be obtained by the post-heat treatment process. These results provide fundamental information for the practical applications of AlSi10Mg parts fabricated by SLM.

플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석 (Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries)

  • 김민경;이동휘;여찬규;최수연;최치원;윤현민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

나노메니퓰레이터를 이용한 나노선의 특성평가 (Applications of Nanomanipulator in Nanowires)

  • 윤상원;서종현;안재평;성태연;이건배
    • 한국분말재료학회지
    • /
    • 제16권2호
    • /
    • pp.138-145
    • /
    • 2009
  • FIB와 나노메니퓰레이터를 이용한 다양한 nano manufacturing을 통해 단일 나노선 소자제작 및 평가가 가능하였으며 또한 나노물질 자체의 전기적, 기계적 특성 평가를 수행할 수 있었다. 나노메니퓰레이터를 나노선에 직접 접촉시켜 전기적 특성을 평가하는 기술은 STA 등과 함께 사용될 때 높은 신뢰도를 갖는 신호를 얻을 수 있었다. 특히, 이를 이용한 나노 소재 특성 평가기술은 소자제작 시간을 단축시킬 수 있고 패턴닝으로부터 화학적 오염을 줄일 수 있는 장점을 갖고 있었다. 또한 FIB와 나노메니퓰레이터를 적절히 이용하면 나노인장시험기로서 활용이 가능하였으며 나노선의 기계적 특성을 본격적으로 평가할 수 있었다. 본 연구의 나노인장시험으로부터 얻은 인장실험 및 TEM분석으로부터 Au 및 Pd 나노선의 인장 및 파괴거동을 직접적으로 관찰할 수 있었다. Au 나노선은 인장초기에 {111}<112> 쌍정이 생성되고 나노선의 직경이 감소하다가 더 이상 인장응력을 수용할 수 없게되면 <110> 축으로부터 <002> 방향으로 재배열하는 방식으로 네킹이 형성되며 최종적으로 결정축 재배열 이후에는 슬립에 의한 파괴가 진행된다. Pd 나노선의 경우에는 Au와는 전혀 다른 파괴거동을 보였다. 먼저 네킹없이 <002> 축으로의 재배열 현상이 관찰되며 이후 cross-slip에 의한 변형을 하였다. 두 나노선 모두 인장 응력이 가해지면 네킹 부분을 중심으로 한 부분에서만 변형이 일어나며 다른 부분에서는 아무런 변형을 찾아 볼 수 없었다.

서스펜션 플라즈마 스프레이 코팅법으로 제조된 Ytterbium Silicate 환경차폐코팅의 상형성 및 구조에 미치는 증착인자 및 원료혼합 공정의 영향 (Effect of Deposition Parameter and Mixing Process of Raw Materials on the Phase and Structure of Ytterbium Silicate Environmental Barrier Coatings by Suspension Plasma Spray Method)

  • 류호림;최선아;이성민;한윤수;최균;남산;오윤석
    • 한국분말재료학회지
    • /
    • 제24권6호
    • /
    • pp.437-443
    • /
    • 2017
  • SiC-based composite materials with light weight, high durability, and high-temperature stability have been actively studied for use in aerospace and defense applications. Moreover, environmental barrier coating (EBC) technologies using oxide-based ceramic materials have been studied to prevent chemical deterioration at a high temperature of $1300^{\circ}C$ or higher. In this study, an ytterbium silicate material, which has recently been actively studied as an environmental barrier coating because of its high-temperature chemical stability, is fabricated on a sintered SiC substrate. $Yb_2O_3$ and $SiO_2$ are used as the raw starting materials to form ytterbium disilicate ($Yb_2Si_2O_7$). Suspension plasma spraying is applied as the coating method. The effect of the mixing method on the particle size and distribution, which affect the coating formation behavior, is investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and X-ray diffraction (XRD) analysis. It is found that the originally designed compounds are not effectively formed because of the refinement and vaporization of the raw material particles, i.e., $SiO_2$, and the formation of a porous coating structure. By changing the coating parameters such as the deposition distance, it is found that a denser coating structure can be formed at a closer deposition distance.

Optical, Mechanical and Tribological Properties of Boronnitride Dispersed Silicon Nitride Ceramics

  • Joshi, Bhupendra;Fu, Zhengyi;Niihara, Koichi;Lee, Soo-Wohn
    • 한국재료학회지
    • /
    • 제20권8호
    • /
    • pp.444-449
    • /
    • 2010
  • Transparent ceramics are used in new technology because of their excellent mechanical properties over glasses. Transparent ceramics are nowadays widely used in armor, laser windows, and in high temperature applications. Silicon nitride ceramics have excellent mechanical properties and if transparent silicon nitride is fabricated, it can be widely used. h-BN has a lubricating property and is ductile. Therefore, adding h-BN to silicon nitride ceramics gives a lubricating property and is also machinable. Translucent silicon nitride was fabricated by hot-press sintering (HPS) and 57% transmittance was observed in the near infrared region. A higher wt. % of h-BN in silicon nitride ceramics does not favor transparency. The optical, mechanical, and tribological properties of BN dispersed polycrystalline $Si_3N_4$ ceramics were affected by the density, ${\alpha}:{\beta}$-phase ratio, and content of h-BN in sintered ceramics. The hot pressed samples were prepared from the mixture of $\alpha-Si_3N_4$, AlN, MgO, and h-BN at $1850^{\circ}C$. The composite contained from 0.25 to 2 wt. % BN powder with sintering aids (9% AlN + 3% MgO). A maximum transmittance of 57% was achieved for the 0.25 wt. % BN doped $Si_3N_4$ ceramics. Fracture toughness increased and wear volume and the friction coefficient decreased with an increase in BN content. The properties such as transmittance, density, hardness, and flexural strength decreased with an increase in content of h-BN in silicon nitride ceramics.