• Title/Summary/Keyword: powder metal

Search Result 1,482, Processing Time 0.027 seconds

Gas Nitriding Mechanism in Titanium Powder Injection Molded Products

  • Osada, Toshiko;Miura, Hideshi;Yamagami, Takanobu;Nishiyabu, Kazuaki;Tanaka, Shigeo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.773-774
    • /
    • 2006
  • Gas surface treatment is considered to be effective for titanium because of its high reactivity. In this study, we investigated the gas nitriding mechanism in titanium sintered parts produced by metal powder injection molding (MIM) process. The microstructure and nitrogen content of sintered MIM parts were greatly affected by nitriding conditions. Nitriding process strongly depended on the specimen size, for example, the size of micro metal injection molding (${\mu}-MIM$) product is so small and the specific surface is so large that the mechanical and functional properties can be modified by nitriding.

  • PDF

High Temperature Oxidation Behavior of Ni based Porous Metal (Ni계 다공체 금속의 고온 산화 거동)

  • Choi, Sung-Hwan;Yun, Jung-Yeul;Lee, Hye-Mun;Kong, Young-Min;Kim, Byoung-Kee;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2011
  • This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as $Al_2O_3$, $Cr_2O_3$, $NiAl_2O_4$, and $NiCr_2O_4$. In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.

Effect analysis in Laser Metal Deposition of SKD61 using AISI M2 power (AISI M2 파우더를 이용한 SKD61 재질의 레이저 메탈 디포지션 기초 특성 분석)

  • Kim, Won-Hyuck;Jung, Byung-Hun;Oh, Myeong-Hwan;Choi, Seong-Won;Kang, Dae-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.50-56
    • /
    • 2015
  • In this study, AISI M2 powder was selected primarily through various pieces of literature in order to improve the hardness and wear resistance. Among the laser metal deposition parameters, laser power was studied to improve the deposition efficiency in the laser metal deposition using a diode-pumped disk laser. An SKD61 hot work steel plate and AISI M2 powder were used as a substrate and powder for laser metal deposition, respectively. Experiments for the laser metal deposition were carried out by changing the laser power and track layer. The quality of the track surface and cross-section after applying the single-layer method was better than that obtained from applying the multi-layer method. As the laser power increased, the track thickness was increased, and the surface roughness deviation was decreased. In laser power condition of 1.6kW, the maximum hardness of the deposition track was 790Hv. This value was 40% better than the hardness of the SKD61 after heat treatment.

Formation of Thicker Hard Alloy Layer on Surface of Aluminum Alloy by PTA Overlaying with Metal Powder (알루미늄 합금의 표면경화)

  • Lee, Young-Ho
    • Proceedings of the KWS Conference
    • /
    • 1996.10a
    • /
    • pp.3-15
    • /
    • 1996
  • The formation of a thicker hard alloyed layer have been investigated on the surface of aluminum cast alloy (AC2B) by PTA overlaying process with Cr, Cu and Ni motel powders under the condition of overlaying current 125-200A. overlaying speed 150 mm/min and different powder feeding rate 5-20 g/min. In addition the characteristics of hardening and wear resistance of alloyed layer here been examined in relation to the microstructure of alloyed layer. Main results obtained were summarized as follows: 1) There was an optimum overlaying condition to get a good alloyed layer with smooth surface. This good layer became easy to be formed as increasing overlaying current and decreasing powder feeding rate under a constant overlaying speed. 2) Cu powder was the most superior one in metal powders used due to a wide optimum overlaying condition range, uniform hardness distribution of Hv250-350, good oar resistance and freedom from cracking in alloyed layer with fine hyper-eutectic structure. 3) On the contrary, irregular hardness distribution was usually obtained in Cr ar Ni alloyed layers of which hardness was increased as Cr or Ni contents and reached to maximum hardness of about Hv400-850 at about 60wt%cr or 40wt%Ni in alloyed layer. 4) Cracking occurred in Cr or Ni alloyed layers with higher hardness than Hv250-300 at mere than 20-25wt% of Cr or Ni contents in alloyed layer. Porosity was observed in all alloyed layers but decreased by usage of spherical powder with smooth surface.

  • PDF

Micro Metal Powder Injection Molding in the W-Cu System (W-Cu의 마이크로 금속분말사출성형)

  • 김순욱;양주환;박순섭;김영도;문인형
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.267-272
    • /
    • 2002
  • The production of micro components is one of the leading technologies in the fields of information and communiation, medical and biotechnology, and micro sensor and micro actuator system. Microfabrication (micromachining) techniques such as X-ray lithography, electroforming, micromolding and excimer laser ablation are used for the production of micro components out of silicon, polymer and a limited number of pure metals or binary alloys. However, since the first development of microfabrication technologies there have been demands for the cost-effective replication in large scale series as well as the extended range of available material. One such promising process is micro powder injection molding (PIM), which inherits the advantages of the conventional PIM technology, such as low production cost, shape complexity, applicability to many materials, applicability to many materials, and good tolerance. This paper reports on a fundamental investigation of the application of W-Cu powder to micro metal injection molding (MIM), especially in view of achieving a good filling and a safe removal of a micro mold conducted in the experiment. It is absolutely legitimate and meaningful, at the present state of the technique, to continue developing the micro MIM towards production processes for micro components.

Characteristics of Laser Aided Direct Metal Deposition Process for Tool Steel (공구강을 이용한 레이저 직접 금속조형 공정의 적층 특성)

  • 장윤상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.327-330
    • /
    • 2004
  • Laser aided direct metal deposition (LADMD) process offers the ability to make a metal component directly from 3-D CAD dimensions. A 3-D object can be formed by repeating laser cladding layer by layer. The key of the build-up mechanism is the effective control of powder delivery and laser power to be irradiated into the melt-pool. A feedback control system using optical sensors is introduced to control laser power and powder mass flow rate. Using H13 tool steel and $CO_2$ laser system, comprehensive analysis are executed to test the efficiency of the system. In addition, the dimensional characteristics of directed deposited material are investigated with the parameters of deposition thickness, laser power, traverse speed and powder mass flow rate.

  • PDF

Study on Metal/Diamond Binary Composite Coatings by Cold Spray

  • Kim, H.J.;Jung, D.H.;Jang, J.H.;Lee, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.240-241
    • /
    • 2006
  • Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with insitu powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.

  • PDF

Characteristics of Laser Aided Direct Metal Powder Deposition Process for Nickel-based Superalloy

  • Zhang, Kai;Liu, Weijun;Shang, Xiaofeng
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.521-522
    • /
    • 2006
  • Laser additive direct deposition of metals is a new rapid manufacturing technology, which combines with computer aided design, laser cladding and rapid prototyping. The advanced technology can build fully-dense metal components directly from CAD files with neither mould nor tool. Based on the theory of this technology, a promising rapid manufacturing system called "Laser Metal Deposition Shaping (LMDS)" is being developed significantly. The microstructure and mechanical properties of the LMDS-formed samples are tested and analyzed synthetically. As a result, significant processing flexibility with the LMDS system over conventional processing capabilities is recognized, with potentially lower production cost, higher quality components, and shorter lead time.

  • PDF

A Study of Bond Strength of Nickel-Chromium Alloys with Porcelain in Ceramometal System (상이(霜異)한 Ceramometal System에 있어서 Nickel-Chromium합금과 도재(陶材)와의 결합강도(結合强度)에 관(關)한 비교실험연구(比較實驗硏究))

  • Kim, Chee-Young
    • Journal of Technologic Dentistry
    • /
    • v.7 no.1
    • /
    • pp.19-25
    • /
    • 1985
  • In oder to compare and measure bond strength of ceramometal system with use of ceramco porcelain powder including SnO2 and uni metal, Rexillium III, Vera Bond as non precious alloys manufactured for porecelain-metal restorations. Total 24 test sample were constructed. All Test sample were measured with a Mitutoyo micrometer graduated to 0.01mm. It is as follows measured of thickness 3.3mm(metal : 1.1mm, porcelain: 2.2mm), width 12mm, length 30mm(porcelain 12mm x 12mm), Compared maximum bending stress test. The results obtained were as follows: 1. Bond strength of each metal with ceramco porcelain powder showed statistical significance.(P<0.05) 2. Vera Bond and uni metal, uni metal and Rexillium III revealed no statistical Significance.(P>0.05) Vera Bond and Rexillium III showed statistical significance.(P<0.05) 3. The order of maximum bending stress was Rexillium III, uni metal, vera Bond. The order of bond strength ratio making bending stress was Vera bond, uni metal, Rexillium III.

  • PDF

Photo Catalytic Ability of Acicular Shaped TiO$_{2}$ Rutile Powder in Aqueous Metal-EDTA Solutions

  • Kim, Sun-Jae;chang-Joo choi;Park, Soon-Dong;Hwang, Jong-Sun;Han, Byung-Sung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.2
    • /
    • pp.37-41
    • /
    • 2001
  • Photo catalytic characteristics of nano-sized TiO$_2$ powder with rutile phase produced using homogeneous precipitation process at low temperatures (HPPLT) were compared with those of commercial P-25 powder by Degussa Co. The TiO$_2$ powder by HPPLT showed very higher photoactivity in the removal rate, showing lower pH values in the solution, than the P-25 powder when eliminating metal ions such as Pb and Cu from aqueous metal-EDTA solutions. This can be inferred the more rapid photo-oxidation or -reduction of metal ions from the aqueous solution, together with relatively higher efficiencies in the use of electron-hole pair formed on the surface of TiO$_2$ particle, under UV light irradiation. Also, in the view of the TiO$_2$ particle morphology, compared to the well-dispersed spherical P-25 particle, the agglomerated TiO$_2$ particle by HPPL T consists of acicular typed primary particle with the thickness ranged of 3∼7 nm, which would be more effective to the photocatalytic reactions without electron-hole recombination on the surface of the TiO$_2$ particle under the UV light irradiation. It is, therefore, thought that the higher photo activity of the rutile TiO$_2$ powder by HPPLT in the aqueous solutions resulted from having its higher specific surface area as well as acicular shape primary particle with very thin thickness.

  • PDF