Browse > Article
http://dx.doi.org/10.4150/KPMI.2011.18.2.122

High Temperature Oxidation Behavior of Ni based Porous Metal  

Choi, Sung-Hwan (School of Advanced Materials Engineering, Andong National University)
Yun, Jung-Yeul (Powder Technology Group, Korea Institute of Materials science)
Lee, Hye-Mun (Powder Technology Group, Korea Institute of Materials science)
Kong, Young-Min (School of Materials Science Engineering, University of Ulsan)
Kim, Byoung-Kee (School of Materials Science Engineering, University of Ulsan)
Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
Publication Information
Journal of Powder Materials / v.18, no.2, 2011 , pp. 122-128 More about this Journal
Abstract
This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as $Al_2O_3$, $Cr_2O_3$, $NiAl_2O_4$, and $NiCr_2O_4$. In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.
Keywords
Porous metal; Ni-Fe-Cr-Al; Pore size; High temperature oxidation; Oxidation resistance; Oxide scale;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. M. Zhu, S. C. Tjong and J. K. L. Lai: Acta mater., 46 (1998) 2969.   DOI   ScienceOn
2 X. Zhao, D. Li, K. Yang, C. C. Fan and Y. Li: Mater. Sci. Technol., 10 (1994) 127.
3 C. T. Sims, N. S. Stoloff and W. C. Hagel: Superalloys II, John Wiley & Sons (1987).
4 J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng and J. Zu: Oxidation of Metals, 53 (2000) 273.   DOI   ScienceOn
5 P. Shahinian and K. Sadananda: Mater. Sci. Eng, A., 108 (1989) 131.   DOI   ScienceOn
6 R. R. Unocic, G. B. Viswanathan, P. M. Sarosi, S. Karthikeyan, J. Li and M. J. Mills: Mater. Sci. Eng, A., 483 (2008) 25.   DOI   ScienceOn
7 B. Jankovic, B. Adnad evic and S. Mentus: Thermochim. Acta. Materialia., 456 (2007) 48.   DOI   ScienceOn
8 L. Kloc, J. Fiala and J. Cadek: Mater. Sci. Eng., A. 202 (1995) 11.   DOI   ScienceOn
9 D. A. Akinlade, W. F. Caley, N. L. Richards and M. C. Chaturvedi: Mater. Sci. Eng. A., 486 (2008) 626.   DOI   ScienceOn
10 H. S. Lee, J. S. Jung. K. B. Yoo and E. H. Kim: Kor. J. Met. Mater., 48 (2010) 277.   DOI   ScienceOn
11 A. Ul-Hamid: Corros. Sci., 46 (2004) 26.
12 H. Choe and D. C. Dunand: Acta Materialia., 52 (2004) 1283.   DOI   ScienceOn
13 Y. O. Park, S.D. Kim, J. M. Seo, S. J. Park, H. K. Choi, H. S. park, J. H. Lim and J. E. Son: Korean J. Chem. Eng., 39 (2001) 446.
14 H. M. Tawancy and N. Sridhar: Oxid. Met., 37 (1991) 143.
15 L. Yang, X. Wu and A. Weng: Scr. Mater., 55 (2006) 107.   DOI   ScienceOn
16 E. W. Andrews, J. S. Huang and L. J. Gibson: Acta mater., 47 (1999) 2927.   DOI   ScienceOn
17 A. M. Hodge and D. C. Dunand: Metall. Mater. Trans. A., 34 (2003) 2353.   DOI
18 J. Choi and K. Kim: J. Korean Powder Metall. Inst., 17 (2010) 489.   DOI   ScienceOn
19 S. Brunauer, P.H. Emmett and E. Teller, J. Am: Chem. Soc., 60 (1938) 309.   DOI
20 S. Brunauer, L. S. Deming, W. K. Deming and E. Teller: J. Am. Chem. Soc., 63 (1940) 1724.