DOI QR코드

DOI QR Code

High Temperature Oxidation Behavior of Ni based Porous Metal

Ni계 다공체 금속의 고온 산화 거동

  • Choi, Sung-Hwan (School of Advanced Materials Engineering, Andong National University) ;
  • Yun, Jung-Yeul (Powder Technology Group, Korea Institute of Materials science) ;
  • Lee, Hye-Mun (Powder Technology Group, Korea Institute of Materials science) ;
  • Kong, Young-Min (School of Materials Science Engineering, University of Ulsan) ;
  • Kim, Byoung-Kee (School of Materials Science Engineering, University of Ulsan) ;
  • Lee, Kee-Ahn (School of Advanced Materials Engineering, Andong National University)
  • 최성환 (안동대학교 신소재공학부) ;
  • 윤중열 (재료연구소 분말기술연구그룹) ;
  • 이혜문 (재료연구소 분말기술연구그룹) ;
  • 공영민 (울산대학교 첨단소재공학부) ;
  • 김병기 (울산대학교 첨단소재공학부) ;
  • 이기안 (안동대학교 신소재공학부)
  • Received : 2011.02.24
  • Accepted : 2011.03.17
  • Published : 2011.04.28

Abstract

This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of $900^{\circ}C$, $1000^{\circ}C$ and $1100^{\circ}C$. The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as $Al_2O_3$, $Cr_2O_3$, $NiAl_2O_4$, and $NiCr_2O_4$. In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.

Keywords

References

  1. P. Shahinian and K. Sadananda: Mater. Sci. Eng, A., 108 (1989) 131. https://doi.org/10.1016/0921-5093(89)90414-0
  2. R. R. Unocic, G. B. Viswanathan, P. M. Sarosi, S. Karthikeyan, J. Li and M. J. Mills: Mater. Sci. Eng, A., 483 (2008) 25. https://doi.org/10.1016/j.msea.2006.08.148
  3. B. Jankovic, B. Adnad evic and S. Mentus: Thermochim. Acta. Materialia., 456 (2007) 48. https://doi.org/10.1016/j.tca.2007.01.033
  4. L. Kloc, J. Fiala and J. Cadek: Mater. Sci. Eng., A. 202 (1995) 11. https://doi.org/10.1016/0921-5093(95)09813-5
  5. H. S. Lee, J. S. Jung. K. B. Yoo and E. H. Kim: Kor. J. Met. Mater., 48 (2010) 277. https://doi.org/10.3365/KJMM.2010.48.04.277
  6. D. A. Akinlade, W. F. Caley, N. L. Richards and M. C. Chaturvedi: Mater. Sci. Eng. A., 486 (2008) 626. https://doi.org/10.1016/j.msea.2007.10.076
  7. A. Ul-Hamid: Corros. Sci., 46 (2004) 26.
  8. H. Choe and D. C. Dunand: Acta Materialia., 52 (2004) 1283. https://doi.org/10.1016/j.actamat.2003.11.012
  9. Y. O. Park, S.D. Kim, J. M. Seo, S. J. Park, H. K. Choi, H. S. park, J. H. Lim and J. E. Son: Korean J. Chem. Eng., 39 (2001) 446.
  10. H. M. Tawancy and N. Sridhar: Oxid. Met., 37 (1991) 143.
  11. L. Yang, X. Wu and A. Weng: Scr. Mater., 55 (2006) 107. https://doi.org/10.1016/j.scriptamat.2006.02.050
  12. E. W. Andrews, J. S. Huang and L. J. Gibson: Acta mater., 47 (1999) 2927. https://doi.org/10.1016/S1359-6454(99)00161-5
  13. A. M. Hodge and D. C. Dunand: Metall. Mater. Trans. A., 34 (2003) 2353. https://doi.org/10.1007/s11661-003-0298-3
  14. J. Choi and K. Kim: J. Korean Powder Metall. Inst., 17 (2010) 489. https://doi.org/10.4150/KPMI.2010.17.6.489
  15. S. Brunauer, P.H. Emmett and E. Teller, J. Am: Chem. Soc., 60 (1938) 309. https://doi.org/10.1021/ja01269a023
  16. S. Brunauer, L. S. Deming, W. K. Deming and E. Teller: J. Am. Chem. Soc., 63 (1940) 1724.
  17. S. M. Zhu, S. C. Tjong and J. K. L. Lai: Acta mater., 46 (1998) 2969. https://doi.org/10.1016/S1359-6454(98)00022-6
  18. X. Zhao, D. Li, K. Yang, C. C. Fan and Y. Li: Mater. Sci. Technol., 10 (1994) 127.
  19. C. T. Sims, N. S. Stoloff and W. C. Hagel: Superalloys II, John Wiley & Sons (1987).
  20. J. Huang, H. Fang, X. Fu, F. Huang, H. Wan, Q. Zhang, S. Deng and J. Zu: Oxidation of Metals, 53 (2000) 273. https://doi.org/10.1023/A:1004537119922

Cited by

  1. Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process vol.19, pp.6, 2012, https://doi.org/10.4150/KPMI.2012.19.6.435
  2. Preparation of oxide powder by continuous oxidation process from recycled Fe-77Ni alloy scrap vol.103, pp.1757-899X, 2015, https://doi.org/10.1088/1757-899X/103/1/012026
  3. Reduction of High Nickel-Based Oxide Particles Using Hydrogen Gas vol.778, pp.1662-7482, 2015, https://doi.org/10.4028/www.scientific.net/AMM.778.148
  4. Fabrication of oxide powder from Fe–46Ni alloy scrap vol.19, pp.sup5, 2015, https://doi.org/10.1179/1432891714Z.0000000001121