• Title/Summary/Keyword: powder compaction

Search Result 261, Processing Time 0.027 seconds

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

A Study on Graphite Powder Compaction Behaviors Using the Discrete Element Method (이산요소법을 이용한 Graphite 분말 압축 특성 연구)

  • Jeong, Jun Hyeok;Choi, Jinnil
    • Journal of Powder Materials
    • /
    • v.28 no.1
    • /
    • pp.1-6
    • /
    • 2021
  • Accurate and effective powder compaction analyses are performed for brittle materials such as graphite, utilized as a solid lubricant, by using the discrete element method (DEM). The reliability of the DEM analysis is confirmed by comparing the results of graphite powder compaction analyses using the DEM particle bonding contact model and particle non-bonding contact model with those from the powder compaction experiment under the same conditions. To improve the characteristics, the parameters influencing the compaction properties of the metal-graphite mixtures are explored. The compressibility increases as the size distribution of the graphite powder increases, where the shape of the graphite particles is uniform. The improved compaction characteristics of the metal-graphite (bonding model) mixtures are further verified by the stress transmission and compressive force distribution between the top and bottom punches. It is confirmed that the application of graphite (bonding model) powders resulted in improved stress transmission and compressive force distribution of 24% and 85%, respectively.

Compaction and Sintering Behaviour of Zirconia Powders: I. Compaction Response (지르코니아 분말의 치밀화와 소결거동 : I. 가압에 따른 치밀화 응답)

  • ;Frank L. Riley
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.489-495
    • /
    • 1992
  • The continuous compaction response of zirconia powders prepared by different processing treatments was investigated. Though the yield point could be or not below 1 MPa, the change of slope was always observed at high pressure range around 60 MPa. Powder compaction was mainly governed by second compaction stage and compaction rate was decreased with increasing forming pressure. Rotary vacuum dried powder favored a high compaction density, whereas freeze dried and calcined powders favored an increase in the pressing efficiency. In order to extract more reliable information about powder compaction, it was necessary to use not only compaction response diagram but also compaction rate diagram.

  • PDF

Densification of Aggregated Alumina Powder under Cyclin Compaction (반복압축하의 응집된 알루미나 분말의 치밀화)

  • Kim, K.T.;Son, G.S.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.136-142
    • /
    • 1992
  • The effects of cyclic stress, frequency and bias-pressure on densification of Al2O3 powder cyclic compaction are investigated. The effect of frequency was not significant on densification of Al2O3 powder under cyclic compaction. The higher the cyclic stress and the lower the bias pressure, the higher densification was achieved. To obtain a higher densification, cyclic compaction was more efficient than 1 stroke compaction. A densification equation was proposed to describe an cyclic time dependent pressure-volume relation for Al2O3 powder under cyclic compaction. This equation was obtained empirically, based on the pressure-volume equation proposed by Cooper and Eaton, the time dependent densification equation by Kim and Suh and experimental data for Al2O3 powder under cyclic compaction. The agreement between the proposed equation and experimental data for Al2O3 powder under cyclic compaction was very good.

  • PDF

Compaction Properties of Fe Powder Fabricated by Warm Compaction (온간성형법으로 제조된 Fe 분말의 성형특성)

  • Kim, Se-Hoon;Lee, Young-Jung;Lee, Jea-Sung;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.14 no.3 s.62
    • /
    • pp.185-189
    • /
    • 2007
  • Various approaches have been proposed to increase the green density. Warm compaction method has been used for the reduction of residual stress, the improvement of magnetic properties and the higher densities. In this work, the effect of warm compaction on green density of Fe powder was investigated. After ball-milling of Fe oxide powder for 30 hours, Fe oxide powder was reduced through the hydrogen reduction process. The pure Fe powder and polymer binder were mixed by 3-D tubular mixer. And then the mixed powder was warm-compacted with various compaction pressure and binder contents. The green density of specimen was added polyvinyl binder was higher than any other specimens.

The Application of P/M Advanced Techniques to Sintered Gears

  • Chongxi, Bao;Zhouqiang, Shen;Zhengping, Shu
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.987-988
    • /
    • 2006
  • The processes of P/M affect the properties of sintered gears. The different techniques of P/M lead to the different properties of sintered gears. This paper summarizes new progress in powder metallurgy for sintered gears. These progresses include warm compaction, high velocity compaction, sinter hardening, high temperature sintering, infiltration, CNC powder press and surface densification etc.

  • PDF

Densification Behavior of Dissimilar Material Powder during Die Compaction (금형압축 하에서 구리/철 이종재료 분말의 치밀화 거동)

  • Kim, Taek-Eui;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.379-386
    • /
    • 2008
  • Densification behavior of dissimilar material powder (copper and pure iron powder) under die compaction was investigated. Experimental data were obtained for copper and pure iron powder compacts with various volume ratios under die compaction. Dissimilar material powder was simultaneously compacted into a jointed cylindrical compact with different powder materials in inner and outer part, respectively. To simulate densification behavior of dissimilar material powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under die compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution of powder compacts under die compaction.

Prevention of Crack Formation by Changing Tool Shapes in Powder Compaction Process

  • Pang, Y.C.;Lee, H.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.30-31
    • /
    • 2006
  • In a multi-action tooling system, which is usually used for the powder compaction process to fabricate the complex multilevel parts, crack formation is crucially detrimental and should be avoided. Among various process factors, tool shape is an important factor to prevent the crack formation during powder compaction process. In this work, the effects of different tool shapes were investigated through the experimental oberservation of pore distribution in real products and the finite element analysis of residual stresses. The results were interpreted based on non-uniform powder density in the compacted parts.

  • PDF

Property of New SEGLESS that is Segregation-free Steel Powder Mixture for Warm Compaction

  • Nishida, Satoshi;Furuta, Satoshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.731-732
    • /
    • 2006
  • Recently warm compaction techniques are focused on and commercialization of one high-density compaction process in the P/M industry. Another development is a new SEGLESS using a developed lubricant that reduces ejection force at room temperature compaction. It is possible to achieve high-density by reducing lubricant amount. In this paper we confirmed that green density was $7.35g/cm^3$ at 686MPa of compaction pressure when the new SEGLESS was applied to relatively lower temperature warm compaction process, such as $80^{\circ}C$.

  • PDF

Densification Behavior of Iron Powder during Cold Stepped Compaction

  • Kang, C.S.;Lee, S.C.;Kim, K.T.;Rozenberg, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.183-184
    • /
    • 2006
  • Densification behavior of iron powder under cold stepped compaction was studied. Experimental data were also obtained for iron powder under cold stepped compaction. The elastoplastic constitutive equation based on the yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to simulate compaction responses of iron powder during cold stepped compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution.

  • PDF