• Title/Summary/Keyword: potentiostatic test

Search Result 34, Processing Time 0.028 seconds

Critical Pitting Temperature of 2205 Duplex Stainless Steels Using Immersion and Electrochemical Polarization Test Methods (침지시험법 및 전기화학적 분극법에 의한 2205 이상 스테인리스강의 임계공식온도 측정 비교)

  • Shin Jae-Ho;Lee Jae-Bong
    • Journal of the Korean institute of surface engineering
    • /
    • v.39 no.1
    • /
    • pp.18-24
    • /
    • 2006
  • Although stainless steels have the excellent corrosion resistance by passive film, they are susceptible to pitting corrosion in the environment containing halogen elements such as chloride ions. The resistance to pitting corrosion can be evaluated by measuring the critical pitting temperature (CPT). CPT values can be obtained using immersion, potentiodynamic and potentiostatic polarization test methods. Results on duplex 2205 stainless steels showed that CPT values were measured as $50^{\circ}C,\;55^{\circ}C\;and\;61^{\circ}C$, respectively for immersion, potentiodynamic and potentiostatic polarization test methods, depending upon the different test methods, even though the difference between CPT values are not much.

Damage Protection Technology by Potentiostatic Method of Cu Alloy Under Cavitation Environment in Seawater (해수 내 캐비테이션 환경에서 동합금의 정전위법에 의한 손상 방지 기술)

  • Kim, Seong-Jong;Park, Jae-Cheul;Jang, Seok-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.3
    • /
    • pp.120-125
    • /
    • 2013
  • This investigation was to identify the electrochemical corrosion protection conditions to minimize the cavitation damage by generating hydrogen gas with the means of hydrogen overvoltage before the impact pressure of the cavity is transferred to the surface. The hybrid potentiostatic test method is designed to evaluate a complexed cavitation and electrochemical characteristic for ALBC3 alloy that is diverse and its broad applications fields in marine industry. The surface observation showed that neither the cavitation damage nor the electrochemical damage by the hydrogen gas generation occurred in the potential of -2.6 V under the cavitation environment. In the potentiostatic experiments under the cavitation environment, the cavities were reflected or cancelled out by the collision of the cavities with the hydrogen gas generated by the hydrogen overvoltage.

Crevice Corrosion Evaluation of Cold Sprayed Copper (저온분사코팅구리의 틈새부식 특성 평가)

  • Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.247-260
    • /
    • 2010
  • The developement of a HLW disposal canister is under way in KAERI using Cold Spray Coating technique. To estimate corrosion behavior of a cold sprayed copper, a creivice corrosion test was conducted at Southwest Research Institute(SWRI) in the United State. For the measurement of repassivation potential needed for crevice corrosion, three methods such as (1) ASTM G61-86 : Cyclic Potentiodynamic Polarization Measurements, (2) Potentiodynamic Polarization plus intermediate Potentiostatic Hold method, and (3) ASTM G192-08 (THE method) : Potentiodynamic- Galvanostatic-Potentiostatic Method, were introduced in this report. In the crevice corrosion test, the occurrence of corrosion at crevice area was optically determined and the repassivation potentials were checked for three kind of copper specimens in a simulated KURT underground water, using a crevice former dictated in ASTM G61-86. The applied electrochemical test techniques were cyclic polarization, potentiostatic polarization, and electrochemical impedance spectroscopy. As a result of crevice corrosion tests, every copper specimens including cold sprayed one did not show any corrosion figure on crevice areas. And the open-cell voltage, at which corrosion reaction initiates, was influenced by the purity of copper, but not their manufacturing method in this experiment. Therefore, it was convinced that there is no crevice corrosion for the cold sprayed copper in KURT underground environment.

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

Investigation on Optimum Protection Potential Decision of Al Alloy(5083F) in Sea Water by Impressed Current Cathodic Protection (해수 환경하에서 알루미늄합금(5083F)의 외부전원법에 의한 최적 방식전위 결정에 관한 연구)

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Jong-Shin
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.6
    • /
    • pp.262-270
    • /
    • 2007
  • Recently, there has been a new appreciation of aluminum alloys as materials that are capable of reducing the environment load. This is because aluminum alloys are lightweight, easy to recycle, permit miniaturization, and have environmental friendly properties. In this study, we investigated the mechanical and electrochemical properties of 5083F aluminum alloys using slow strain rate test(SSRT) and potentiostatic tests under various potential conditions. In the potentiostatic tests, the current density in the potential range from -0.7 to -1.4V after 1,200 s was low. After considering the results of the potentiostatic tests, maximum tensile strength, yield strength, elongation, time-to-fracture, observation of fractured specimen and fractography analysis, the optimum protection potential range was between -1.3 and -0.7V(Ag/AgCl).

Investigation on optimum protection potential of Al-Mg alloy for small ship application in sea water solution (소형선박용 Al-Mg 합금의 해양환경 중 최적 방식 전위결정에 관한 연구)

  • Kim, Seong-Jong;Jang, Seok-Ki;Kim, Jeong-Il;Ko, Jae-Yong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.23-24
    • /
    • 2005
  • This paper investigated the mechanical and electrochemical properties of Al alloys in a slow strain rate test under various potential conditions. In general, Al and Al alloys do not corrode on formation of a film that has resistance to corrosion in neutral solutions. In seawater, however, $Cl^-$ ions lead to the formation and destruction of a passive film. In a potentiostatic experiment, the current density after 1200 sec in the potential range of $-0.68{\sim}-1.5 V$ was low. Comparison of the maximum tensile strength, elongation, and time to fracture indicated that the optimum protection potential range was from -1.5 to -0.7 V(SSCE).

  • PDF

Comparative Study of Ni effect on the Corrosion Behavior of Low Alloy Steels in FGD and Acid Rain Environments (산성비 및 배연탈황설비 환경에서 Ni 첨가에 따른 저합금강의 내식성 비교연구)

  • Han, Jun-Hee;Nguyen, Dang-Nam;Jang, Young-Wook;Kim, Jung-Gu
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.9
    • /
    • pp.558-566
    • /
    • 2009
  • The alloying effect of a small amount of nickel on low alloy steel for application to flue gas desulfurization(FGD) systems was studied. The structural characteristics of the rust layer were investigated by scanning electron microscopy(SEM). The electrochemical properties were examined by means of potentiostatic polarization test, potentiodynamic polarization test, and electrochemical impedance spectroscopy(EIS) in a modified green death solution of 16.9 vol.% $H_2SO_4$+0.35 vol.% HCl at $60^{\circ}C$ and an acid rain solution of $6.25{\times}10^{-5}M\;H_2SO_4+5.5{\times}10^{-3}M\;NaCl$ at room temperature. It was found that as the amount of nickel increased, the corrosion rate increased in the modified green death solution, which seemed to result from micro-galvanic corrosion between NiS and alloy matrix. In acid rain solution, the corrosion rate decreased as the amount of nickel increased due to the repulsive force of $NiFe_2O_4$ rust against $Cl^-$ ions by electronegativity.

Corrosion Characteristics of Ti-xTa Alloys with Ta contents (Ta 함량에 따른 Ti-xTa 합금의 부식특성)

  • Kim, H.J.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2013
  • The purpose of this study was to investigate corrosion characteristics of Ti-xTa alloys with Ta contents. Ti-xTa alloys used as samples (x=30, 40%) were arc-melted under argon atmosphere of 99.9% purity. Ti-xTa alloys were homogenized for 12hr at $1000^{\circ}C$ and then water quenched. The surface characteristics of Ti-xTa alloys were investigated using optical microscopy (OM) and X-ray diffractometer (XRD). The anodic corrosion behaviors of the specimens were examined through potentiodynamic, potentiostatic and galvanostatic test in 0.9 % NaCl solution at $36.5{\pm}1^{\circ}C$. After corrosion test, the surface characteristics of Ti-xTa alloys were investigated using OM. The microstructure of Ti-Ta alloy showed the beta structure with Ta content. The corrosion resistance of Ti alloy was improved by increasing Ta content and the corrosion morphology of Ti-Ta alloy showed that the site attacked by chloride ion decreased from the active to passive region with Ta content. Potential of Ti-40Ta alloy increased as time increased, whereas, current density of Ti-40Ta alloy decreased as time increased compared to Ti-30 alloy.

Evaluation on Potentiostatic Characteristics of Al-4.06Mg-0.74Mn Alloy with Cavitation Environment in Seawater (Al-4.06Mg-0.74Mn 합금의 해수 내 캐비테이션 환경에 따른 정전위 특성 평가)

  • Lee, Seung-Jun;Han, Min-Su;Jang, Seok-Ki;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.6
    • /
    • pp.272-277
    • /
    • 2012
  • The hull of a fast sailing aluminium ship are generally prone to erosion owing to the impact of seawater. At this time, synergistic effects of the erosion and the corrosion by aggressive ions such as chlorides tend to aggravate the damage. There have been various attempts, including selection of erosion-resistant materials, cathodic protection and addition of corrosion inhibitors, to overcome damage by erosion or corrosion under marine environments. These approaches, however, have limits on identifying the damage mechanism clearly, because they depend on analogical interpretation by correlating two damage behaviors after the individual studies are assessed. In this research, it was devised a hybrid testing apparatus that integrates electrochemical corrosion test and cavitation test, and thus the erosion-corrosion behavior by cavitation was investigated more reliably. As a result, the slightest damage was observed at the potentials between -1.6 V and -1.5 V. This is considered to be due to a reflection or counterbalancing effect caused by collision of the cavitation cavities and the hydrogen gas formed by activation polarization.

Electrochemical Characteristics and Damage Behavior in Cathode Operating Conditions of 316L Stainless Steel with Test Time and Applied Potential in Metallic Bipolar Plates for PEMFC (고분자 전해질 연료전지 양극 작동 환경에서 실험 시간 및 작동 전압 변수에 따른 316L 스테인리스강의 전기화학적 특성과 손상 거동)

  • Shin, Dong-Ho;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.451-465
    • /
    • 2021
  • In this investigation, electrochemical characteristics and damage behavior of 316L stainless steel polymer electrolyte membrane fuel cell(PEMFC) were analyzed by potentiodynamic and potentiostatic tests in cathode operating condition of PEMFC. As the result of potentiodynamic polarization test, range of passive region was larger than range of active region. In the result of potentiostatic test, damage depth and width, pit volume, and surface roughness were increased 1.57, 1.27, 2.48, and 1.34 times, respectively, at 1.2 V compared to 0.6 V at 24 hours. Also, as a result of linear regression analysis of damage depth and width graph, trend lines of damage depth and width according to applied potentials were 16.6 and 14.3 times larger, respectively. This demonstrated that applied potential had a greater effect on pitting damage depth of 316L stainless steel. The damage tendency values were 0.329 at 6 hours and 0.633 at 24 hours with applied potentials, representing rapid growth in depth direction according to the test times and applied potentials. Scanning electron microscopy images revealed that surface of specimen exhibited clear pitting damage with test times and applied potentials, which was thought to be because a stable oxide film was formed by Cr and Mo.