• Title/Summary/Keyword: potential-pH diagram

Search Result 24, Processing Time 0.02 seconds

A Standard Way of Constructing a Data Warehouse based on a Neutral Model for Sharing Product Dat of Nuclear Power Plants (원자력 발전소 제품 데이터의 공유를 위한 중립 모델 기반의 데이터 웨어하우스의 구축)

  • Mun, D.H.;Cheon, S.U.;Choi, Y.J.;Han, S.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.74-85
    • /
    • 2007
  • During the lifecycle of a nuclear power plant many organizations are involved in KOREA. Korea Plant Engineering Co. (KOPEC) participates in the design stage, Korea Hydraulic and Nuclear Power (KHNP) operates and manages all nuclear power plants in KOREA, Dusan Heavy Industries manufactures the main equipment, and a construction company constructs the plant. Even though each organization has a digital data management system inside and obtains a certain level of automation, data sharing among organizations is poor. KHNP gets drawing and technical specifications from KOPEC in the form of paper. It results in manual re-work of definition and there are potential errors in the process. A data warehouse based on a neutral model has been constructed in order to make an information bridge between design and O&M phases. GPM(generic product model), a data model from Hitachi, Japan is addressed and extended in this study. GPM has a similar architecture with ISO 15926 "life cycle data for process plant". The extension is oriented to nuclear power plants. This paper introduces some of implementation results: 1) 2D piping and instrument diagram (P&ID) and 3D CAD model exchanges and their visualization; 2) Interface between GPM-based data warehouse and KHNP ERP system.

Preparation and Characterization of Liquefied Ibuprofen Using Self-Microemulsion Drug Delivery System (SMEDDS) (자가미세유화를 이용한 이부프로펜 액상제제의 제조와 특성)

  • Ahn, Yong-San;Song, Ji-Hee;Kang, Bok-Ki;Kim, Moon-Suk;Cho, Sun-Hang;Rhee, John-M.;Lee, Hai-Bang;Khang, Gil-Son
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Ibuprofen (IBU), is a non-steroidal anti-inflammatory drug, used to treat rheumatoid arthritis, removal of fever and mild to moderate pain. Because of small dosage and very low accumulation in the body, IBU has been used to heal children's fever. However, IBU was very low solubility in a low pH and water (in water $0.03{\sim}2.5$ mg/ml). A nanoemulsion containing IBU by means of self-microemulsion drug delver system (SMEDDS) was prepared in order to enhance the solubility of IBU. The SMEDDS was composed of cosurfactant, oil and surfactant The solubility of IBU in various components such as cosurfactant, oil and surfactant was examined. $Carbitol^{\circledR}\;(386.99{\pm}20.5\;mg/ml)$ as a cosurfactant, $Labrafil^{\circledR}$  M1944CS $(90.16{\pm}1.60mg/ml)$ as an oil and $Cremopher^{\circledR}$  RH-40 $(239.01{\pm}2.8\;mg/ml)$ as a surfactant were used in this study for preparing SMEDDS. Optimized formulation of SMEDDS was obtained by phase diagram which express the section of nanoemulsion formation. The SMEDDS containing IBU had higher dissolution rate than conventional IBU sirups. Thus the SMEDDS was a potential candidate of stable conventional and effective oral dosage form for IBU.

Occurrence and Influence of acid Leachate by Pyrite in Underground Rocks of Road Construction Field in the Miryang Area (밀양지역 도로건설 현장 지반암석내 분포하는 황철석에 의한 산성침출수 발생과 영향)

  • Chae, Sun Hee;Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Shin, Sang Sik;Park, Jun Sik;Ou, Song Min
    • The Journal of Engineering Geology
    • /
    • v.28 no.3
    • /
    • pp.501-512
    • /
    • 2018
  • The acid leachate derived from the sulfide mineral such as pyrite can cause problems such as aging of infrastructure and environment contamination around the civil construction site. The purpose of this study is to assess the environmental effect of an acid leachate derived from pyrite in the Miryang area under road construction. In this study, 13 samples of situ core were used for the net acid generation (NAG) experiment. The chemical composition including pH, oxidation and reduction potential (ORP) and electrical conductance of water samples produced from the NAG test was analyzed. In additional, five polished thin sections of rock cores were made for electro microprobe analyses. In the results of the NAG tests, 7 samples showed lower values than pH 3.5. It strongly indicated that these areas are under the environmental and infrastructure damage by the acid leachate. The chemical type of the 7 samples was classified as the $Fe(Ca)-SO_4$ type, which is totally a different type compared to general groundwater. The concentration of total sulfur ranges from 0.004% to 12.5%. 6 rock samples are plotted on a potentially acid forming zone in the relation diagram between the total sulfide and NAG-pH. In conclusion, it is suggested that a protection method against an environmental demage and an infrastructure corrosions by the acid leachate should be prepared in all of areas under a road construction.

The Characteristics of Shallow Groundwater in Petroleum Contaminated Site and the Assessment of Efficiency of Biopile by Off-gas Analysis (유류오염지역의 지하수 수질특성과 토양가스 분석을 통한 바이오파일의 효율평가)

  • Cho, Chang-Hwan;Sung, Ki-June
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.36-44
    • /
    • 2013
  • The objectives of this study were to identify the characteristics of shallow groundwater from the oil-contaminated site for a long period and to evaluate the applicability of biopile technology to treat the soil excavated from it. The eight monitoring wells were installed in the contaminated site and pH, Electrical Conductivity (EC), Dissolved Oxygen (DO), Oxidation Reduction Potential (ORP), Temperature and the concentrations of major ions and pollutants were measured. The VOCs in soil gas were monitored during biopile operation and TPH concentration was analyzed at the termination of the experiment. The pH was 6.62 considered subacid and EC was 886.19 ${\mu}S/cm$. DO was measured to be 2.06 mg/L showing the similar characteristic of deep groundwater. ORP was 119.02 mV indicating oxidation state. The temperature of groundwater was measured to be $16.97^{\circ}C$. The piper diagram showed that groundwater was classified as Ca-$HCO_3$ type considered deep groundwater. The ground water concentration for TPH, Benzene, Toluene, Xylene of the first round was slightly higher than that of the second round. The concentration of carbon dioxide of soil gas was increased to 1.3% and the concentration of VOCs was completely eliminated after the 40 days. The TPH concentration showed 98% remediation efficiency after the 90 days biopile operation.