• Title/Summary/Keyword: potential-pH diagram

Search Result 24, Processing Time 0.021 seconds

The Effect of Magnesium and Aluminium Ions on Zeta Potential of Bubbles (수중의 마그네슘과 알루미늄 이온이 기포의 제타전위에 미치는 영향)

  • Han, Moo-Young;Ahn, Hyun-Joo;Shin, Min-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.5
    • /
    • pp.573-579
    • /
    • 2004
  • Electroflotation, which is used as an alternative to sedimentation, is a separation treatment process that uses small bubbles to remove low-density particulates. Making allowances for recent collision efficiency diagram based on trajectory analysis, it is necessary to tailor zeta potential of bubbles that collide with negatively charged particles. In this paper, the study was performed to investigate the effects of magnesium and aluminium ions on zeta potential of bubbles. And, it was studied to find out factors which could affect the positively charged bubbles. Consequently, zeta potential of bubbles increased both with higher concentration of metal ions and in the acidic pH value. And, a probable principle that explained the procedure of charge reversal could be a combined mechanism with both specific adsorption of hydroxylated species and laying down of hydroxide precipitate. It also depended on the metal ion concentration in the solution to display its capacity to control the bubble surface.

Interfacial Features of Colloidal Particles in Aqueous Environment and Change in Its Stability According to Influential Conditions (수중 콜로이드성 고형물의 계면화학적 특성 및 영향 인자 조건에 따른 안정성의 변화)

  • Shin, Sung-Hye;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2227-2238
    • /
    • 2000
  • The interfacial features of suspension system made of $CaCO_3$ particles have been investigated for the purpose of designing its effective treatment process. For the examination of variation of electrokinetic potential as a function of pH. the value of potential was observed to shift in the negative direction, which was thought to be due to the adsorption of hydroxide ion on the particle surface. Adsorption of surfactant on suspended particles resulted in the change of surface charge and shift in electrokinetic potential, which was dependent upon the sign of head charge and concentration of surfactant. Addition of inorganic salts affected stability of suspension greatly and sedimentation rate of suspension was influenced by the electric valence and amount of ions produced by dissolution of inorganic coagulants. DLVO theory made it possible to construct a energy profile diagram and a close correlation was found between experimental result and theoretically derived consequences. Non-specific adsorption of indifferent electrolyte resulted in the compression of electrical double layer and specific adsorption induced the shift of IEP and PZC in the opposite direction.

  • PDF

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces (액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용)

  • Liu, XiaoYun;Han, Hye Youn;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.506-512
    • /
    • 2017
  • The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VI). Diagnosis of Drought Tolerance by the P-V Curves of Twenty Broad-Leaved Species (수목(樹木)의 수분특성(水分特性)에 관한 생리(生理)·생태학적(生態學的) 해석(解析)(VI). P-V 곡선법(曲線法)에 의한 활엽수(闊葉樹) 20종(種)의 내건성(耐乾性) 진단(診斷))

  • Han, Sang Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.80 no.2
    • /
    • pp.210-219
    • /
    • 1991
  • This study is to diagnose the drought tolerance of twenty broad-leaved tree species by the pressure-volume(P-V) curves. As for the diagnosis of drought tolerance, the valuable water relations parameters obtained from P-V curves are the osmotic potential at full turgor, ${\Psi}_0{^{sat}}$, osmotic potential at incipient plasmolysis, ${\Psi}_0{^{tlp}}$, maximum bulk modulus of elasticity, $E_{max}$, and relative water content at incipient plasmolysis, $RWC^{tlp}$. Also, the figures related to the diagnosis of drought tolerance are the free water content (FWC) versus leaf water potential(${\Psi}_L$), volume-averaged turgor pressure ($P_{vat}$) versus leaf water potential (${\Psi}_L$), and H$\ddot{o}$fler diagram. In this study, the relatively high drought tolerant species are Fraxinus rhynchophylla, Quercus acutissima, Quercus serrata, Quercus aliena, and Populus alba${\times}$glandulosa ; the relatively low drought tolerant species are Fraxinus mandshurica, Betula platyphylla var. japonica, Populus euramericana, Kalopanax pictum, Carpinus loxiflora, Carpinus cordata, Prunus sargentii, Prunus leveilleana, and Cornus controversa ; medium species are Quercus mongolica, Acer mono, Acer triflorum, Acer pseudo-sieboldianum, Ulmus davidiana, and Zelkova serrata.

  • PDF

A Study on the Corrosion of Al-Alloy Propeller Used for a Coasting Vessel (연안 선박용 Al합금 프로펠러의 부식에 관한 연구)

  • LIM, Uh-Joh;PARK, Hee-Ok;YUN, Byoung-Du
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.15 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • Recently, with the tendency of lightening, high-strength and high-speed in the marine industries such as marine structures, ships and propellers, it is rapidly enlarged the use of the aluminium alloy. Therefore, there occurs much interest in the study on corrosion characteristics of aluminium alloy. This paper was studied on the corrosion characteristics of Al-Mg alloy propeller used for a coasting vessel. Under the various pH of marine environment, the corrosion test of Al-Mg alloy was carried out. And thus polarization resistance, corrosion potential, and current density behavior of Al-Mg alloy and galvanic corrosion behavior of Al-brass and Al-Mg alloy coupled Al 5086 and SS 400 for hull were investigated. The main results are as following: 1. The corrosion potential of Al-brass propeller is more nobel than materials for hull, but that of Al-Mg alloy propeller is low or similar to materials for hull. Therefore, the galvanic corrosion of hull due to Al-Mg propeller don't occur. 2. The polarization resistance of Al-Mg alloy in sea water of pH 4 is highest, and corrosion current density of Al-Mg propeller is the most controlled. 3. As pH value decreases, potential showed Evans polarization diagram approaches cathodic potential. The corrosion current density of Al-Mg alloy is controlled to anodic reaction rate, therefore, the corrosion reaction of Al-Mg alloy is anodic control.

Electrochemical Study on Transfer Reaction of Ionizable Cefotiam across a Water/1,2-dichloroethane Interface and Drug Sensing Applications (물/1,2-Dichloroethane 계면에서 Cefotiam 약물 이온의 전이 반응 연구 및 약물 센서에 응용)

  • Liu, XiaoYun;Jeshycka, Shinta;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.29 no.5
    • /
    • pp.581-588
    • /
    • 2018
  • In this article, electrochemical investigation of the transfer reaction of ionizable cefotiam (CTM), an antibiotic molecule across a polarized water/1,2-dichloroethane (water/1,2-DCE) interface was studied. Ion partition diagram providing the preferred charged form of CTM in either water or 1,2-DCE phase was established via the voltammetric evaluation of the transfer process of differently charged CTM species depending upon the pH variation of aqueous solutions. Thermodynamic information including the formal transfer potential and formal Gibbs transfer energy values in addition to important pharmacokinetics including partition coefficients of ionizable CTM were also evaluated. In particular, the current associated with the transfer of CTM present at pH 3.0 aqueous solution proportionally increased with respect to the CTM concentration which was further used for developing CTM sensitive ion sensor. In order to improve the portability and convenient usage, a single microhole interface fabricated in a supportive polyethylene terephthalate film was used of which hole was filled with a polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel replacing 1,2-DCE, a toxic organic solvent. A dynamic range of $1-10{\mu}M$ CTM was obtained.

EFFECT OF CARBONATE ON THE SOLUBILITY OF NEPTUNIUM IN NATURAL GRANITIC GROUNDWATER

  • Kim, B.Y.;Oh, J.Y.;Baik, M.H.;Yun, J.I.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.5
    • /
    • pp.552-561
    • /
    • 2010
  • This study investigates the solubility of neptunium (Np) in the deep natural groundwater of the Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). According to a Pourbaix diagram (pH-$E_h$ diagram) that was calculated using the geochemical modeling program PHREEQC 2.0, the redox potential and the carbonate ion concentration both control the solubility of neptunium. The carbonate effect becomes pronounced when the total carbonate concentration is higher than $1.5\;{\times}\;10^{-2}$ M at $E_h$ = -200 mV and the pH value is 10. Given the assumption that the solubility-limiting stable solid phase is $Np(OH)_4(am)$ under the reducing condition relevant to KURT, the soluble neptunium concentrations were in the range of $1\;{\times}\;10^{-9}$ M to $3\;{\times}\;10^{-9}$ M under natural groundwater conditions. However, the solubility of neptunium, which was calculated with the formation constants of neptunium complexes selected in an OECD-NEA TDB review, strongly deviates from the value measured in natural groundwater. Thus, it is highly recommended that a prediction of neptunium solubility is based on the formation constants of ternary Np(IV) hydroxo-carbonato complexes, even though the presence of those complexes is deficient in terms of the characterization of neptunium species. Based on a comparison of the measurements and calculations of geochemical modeling, the formation constants for the "upper limit" of the Np(IV) hydroxo-carbonato complexes, namely $Np(OH)_y(CO_3)_z^{4-y-2z}$, were appraised as follows: log $K^{\circ}_{122}\;=\;-3.0{\pm}0.5$ for $Np(OH)_2(CO_3)_2^{2-}$, log $K^{\circ}_{131}\;=\;-5.0{\pm}0.5$ for $Np(OH)_3(CO_3)^-$, and log $K^{\circ}_{141}\;=\;-6.0{\pm}0.5$ for $Np(OH)_4(CO_3)^{2-}$.

Template Synthesis of $Ni(OH)_2$ nanowires by Electrochemical Process

  • Zhang, Wentao;Beili, Pang;Lee, Hong-Ro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.68-68
    • /
    • 2008
  • There are several methods for oxide coating on metals, such as aluminum or carbon nanotubes(CNTs). Usually CVD method is introduced for various oxide coating on CNTs. Another method is electrochemical method which use potential-pH diagram for oxide coating on metal or CNTs. In this experiment, electrochemical coating parameter for oxide coating on aluminum template modified by acids and hydrogen peroxide ($H_2O_2$) were examined. SEM micrographs displayed clearly $Ni(OH)_2$ coating on template. For confirmation of electrochemical method application to EDLC electrode material fabrication, EDS spectrum was analyzed.

  • PDF

Influence of Temperature on the Treatment Efficiency of Chlorinated Organic Substances in Groundwater by Permeable Reactive Barrier (염소계 유기화합물로 오염된 지하수의 반응성 투과 벽체 처리 효율에 대한 온도의 영향)

  • Kim, Sun-Hye;Kim, Eun-Zi;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2014
  • The influence of temperature on the treatment efficiency of chlorinated organic substances contained in groundwater by permeable reactive barrier which is composed of $Fe^{\circ}$ has been investigated by constructing the Pourbaix diagrams for Fe-$H_2O$ system at different temperatures based on thermodynamic estimation. In aerobic condition, the equilibrium potentials for $Fe^{\circ}/Fe^{2+}$ and $Fe^{2+}/Fe^{3+}$ were observed to increase, therefore, the dechlorination reaction for organic pollutants by $Fe^{\circ}$ was considered to decline with temperature due to the diminished oxidation of reactive barrier. The result for the variations of the ionization fraction of $Fe^{2+}$ and $Fe^{3+}$ ion in the pH range of 0 ~ 2.5 obtained by employing Visual MINTEQ program showed that the ionization fraction of $Fe^{2+}$ increased with pH, however, that of $Fe^{3+}$ decreased symmetrically and the extent of the variation of ionization fraction for both ions was raised as temperature rises. The equilibrium pH for $Fe^{3+}/Fe(OH)_3$ was examined to decrease with temperature so that the treatment efficiency of chlorinated organic substance was expected to decrease with temperature due to the enhanced formation of passivating film in aerobic condition. The change of the reactivity of a specific chemical species with temperature was defined quantitatively based on the area of its stable region in Pourbaix diagram and depending on this the reactivity of $Fe^{3+}$ was shown to decrease with temperature, however, that of $Fe(OH)_3$ was decreased monotonously as temperature is raised for $Fe^{3+}/Fe(OH)_3$ equilibrium system. In anaerobic condition, the equilibrium potential for $Fe^{\circ}/Fe^{2+}$ was observed to rise and the equilibrium pH for $Fe^{2+}/Fe(OH)_2$ were examined to decrease as temperature increases, therefore, similar to that for aerobic condition the efficiency of the dechlorination reaction for organic substances was considered to be diminished when temperature rises because of the reduced oxidation of $Fe^{\circ}$ and increased formation of $Fe(OH)_2$ passivating film.

Effect of Phosphate Fertilizer and Manure in Reducing Cadmium Phytoavailability in Radish-grown Soil (중금속 오염 농경지에서 축분퇴비와 인산비료의 혼용시용에 의한 카드뮴 식물이용성 저감효과)

  • Hong, Chang-Oh;Kim, Sang-Yoon;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.261-267
    • /
    • 2011
  • ACKGROUND: Cadmium (Cd) has long been recognized as one of most toxic elements. Application of organic amendments and phosphate fertilizers can decrease the bioavailability of heavy metals in contaminated soil. METHODS AND RESULTS: This study was conducted to evaluate effect of combined application of phosphate fertilizer and manure in reducing cadmium phytoavailability in heavy metal contaminated soil. Phosphate fertilizers [Fused and super phosphate (FSP) and $K_2HPO_4$ (DPP)] and manure (M) were applied as single application (FSP, DPP, and M) to combined application (FSP+M and DPP+M) before radish seeding. $K_2HPO_4$ decreased $NH_4OAc$ extractable Cd and plant Cd concentration, mainly due to increases in soil pH and negative charge. However, FSP increased $NH_4OAc$ extractable Cd and plant Cd concentration. Manure significantly increased soil pH and negative charge. Combined application of phosphate fertilizer and manure were much more effective in reducing Cd phytoavailability than a simple application of each component. Calculated solubility diagram indicated that Cd concentrations in the solution of soils amended with phosphate fertilizers and manure were undersaturated with respect to all potential Cd minerals [$Cd_3(PO_4)_2$, $CdCO_3$, $Cd(OH)_2$, and $CdHPO_4$]. Plant Cd concentration and $NH_4OAc$ extractable Cd were negatively related to soil pH and negative charge. CONCLUSION: Alleviation of Cd phytoavailability with phosphate fertilizer and manure can be attributed primarily to Cd immobilization due to the increase in soil pH and negative charge rather than Cd and phosphate precipitation. Therefore, combined application of alkaline phosphate materials and manure is effective for reducing Cd phytoavailability.