Browse > Article
http://dx.doi.org/10.14478/ace.2018.1061

Electrochemical Study on Transfer Reaction of Ionizable Cefotiam across a Water/1,2-dichloroethane Interface and Drug Sensing Applications  

Liu, XiaoYun (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Jeshycka, Shinta (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.5, 2018 , pp. 581-588 More about this Journal
Abstract
In this article, electrochemical investigation of the transfer reaction of ionizable cefotiam (CTM), an antibiotic molecule across a polarized water/1,2-dichloroethane (water/1,2-DCE) interface was studied. Ion partition diagram providing the preferred charged form of CTM in either water or 1,2-DCE phase was established via the voltammetric evaluation of the transfer process of differently charged CTM species depending upon the pH variation of aqueous solutions. Thermodynamic information including the formal transfer potential and formal Gibbs transfer energy values in addition to important pharmacokinetics including partition coefficients of ionizable CTM were also evaluated. In particular, the current associated with the transfer of CTM present at pH 3.0 aqueous solution proportionally increased with respect to the CTM concentration which was further used for developing CTM sensitive ion sensor. In order to improve the portability and convenient usage, a single microhole interface fabricated in a supportive polyethylene terephthalate film was used of which hole was filled with a polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel replacing 1,2-DCE, a toxic organic solvent. A dynamic range of $1-10{\mu}M$ CTM was obtained.
Keywords
cefotiam (CTM); ITIES; formal transfer potential; partition coefficient; ionic partition diagram;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Iwahi and K. Tsuchiya, Comparative activities of cefotiam and cefazolin against urinary tract infections with Proteus mirabilis in mice, Antimicrob. Agents Chemother., 18, 257-263 (1980).   DOI
2 M. Nakao, T. Nishi, and K. Tsuchiya, In Vitro and In Vivo Morphological Response of Klebsiella pneumoniae to Cefotiam and Cefazolin, Antimicrob. Agents Chemother., 19, 901-910 (1981).   DOI
3 B. Watt and F. V. Brown, In-Vitro activity of cefotiam against bacteria of clinical interest, J. Antimicrob. Chemother., 10, 391-395 (1982).   DOI
4 P. C. Fuchs, A. L. Barry, R. N. Jones, and C. Thornsberry, Cefotiam susceptibility testing criteria, J. Clin. Microbiol., 22, 1045-1047 (1985).
5 J. M. Brogard, F. Jehl, B. Willemin, A. M. Lamalle, J. F. Blickle, and H. Monteil, Clinical Pharmacokinetics of cefotiam, Clin. Pharmacokinet., 17, 163-174 (1989).   DOI
6 F. D.-M. P. Pehourcq, A. Radouane, L. Labat, and B. Bannwarth, Influence of lipophilicity on the protein binding affinity of cephalosporins, Pharm. Res., 12, 1535-1538 (1995).   DOI
7 S. Tawara, S. Matsumoto, Y. Matsumoto, T. Kamimura, and S. Goto, Structure-binding relationship and binding sites of cephalosporins in human serum albumin, J. Antibiot., 45, 1346-1357 (1992).   DOI
8 J. Strutwolf, M. D. Scanlon, and D. W. M. Arrigan, The performance of differential pulse stripping voltammetry at micro-liquid-liquid interface arrays, J. Electroanal. Chem., 641, 7-13 (2010).   DOI
9 V. Marecek and Z. Samec, Electrolysis at the interface between two immiscible electrolyte solutions: Determination of acetylcholine by differential pulse stripping voltammetry, Anal. Lett., 14, 1241-1253 (1981).   DOI
10 P. Peljo and H. H. Girault, Liquid/liquid interfaces, electrochemistry at. In: R. A. Meyers (ed.), Encyclopedia of Analytical Chemistry, 1-11, John Wiley & Sons (2012).
11 J. A. Ortuno, C. Serna, A. Molina, and A. Gil, Differential pulse voltammetry and additive differential pulse voltammetry with solvent polymeric membrane ion sensors, Anal. Chem., 78, 8129-8133 (2006).   DOI
12 B. Liu and M. V. Mirkin, Electrochemistry at microscopic liquid-liquid interfaces, Electroanalysis, 12, 1433-1446 (2000).   DOI
13 T. J. Stockmann, A.-M. Montgomery, and Z. Ding, Formal transfer potentials of strontium and uranyl ions at water/ 1,2-dichloroethane interfaces, Can. J. Chem., 90, 836-842 (2012).   DOI
14 V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Generalization of ionic partition diagrams to lipophilic compounds and to biphasic systems with variable phase volume ratios, J. Am. Chem. Soc., 123, 10684-10690 (2001).   DOI
15 Y. Shao, M. D. Osborne, and H. H. Girault, Assisted ion transfer at micro-ITIES supported at the tip of micropipettes, J. Electroanal. Chem., 318, 101-109 (1991).   DOI
16 S. N. Faisal, C. M. Pereira, S. Rho, and H. J. Lee, Amperometric proton selective sensors utilizing ion transfer reactions across a microhole liquid/gel interface, Phys. Chem. Chem. Phys., 12, 15184-15189 (2010).   DOI
17 M. A. Deryabina, S. H. Hansen, and H. Jensen, Molecular interactions in lipophilic environments studied by electrochemistry at interfaces between immiscible electrolyte solutions, Anal. Chem., 80, 203-208 (2008).   DOI
18 Z. Samec, V. Marecek, J. Koryta, and M. W. Khalil, Investigation of ion transfer across the interface between two immiscible electrolyte solutions by cyclic voltammetry, J. Electroanal. Chem., 83, 393-397 (1977).   DOI
19 S. Liu, Q. Li, and Y. Shao, Electrochemistry at micro- and nanoscopic liquid/liquid interfaces, Chem. Soc. Rev., 40, 2236-2253 (2011).   DOI
20 Y. Yoshimura, N. Hamaguchi, and T. Yashiki, Synthesis and relationship between physicochemical properties and oral absorption of pivaloyloxymethyl esters of parenteral cephalosporins, Int. J. Pharm., 23, 117-129 (1985).   DOI
21 M. C. Rouan, F. Abadie, A. Leclerc, and F. Juge, Systematic approach to the determination of cephalosporins in biological fluids by reversed-phase liquid chromatography, J. Chromatogr., 275, 133-144 (1983).   DOI
22 P. J. Elving, J. M. Markowitz, and I. Rosenthal, Preparation of buffer system of constant ionic strength, Anal. Chem., 28, 1179-1180 (1956).   DOI
23 F. Reymond, P.-A. Carrupt, B. Testa, and H. H. Girault, Charge and delocalisation effects on the lipophilicity of protonable drugs, Chem. Eur. J., 5, 39-47 (1999).   DOI
24 D. Homolka, K. Holub, and V. Marecek, Facilitated ion transfer across the water/nitrobenzene interface theory for single-scan voltammetry applied to a reversible system, J. Electroanal. Chem., 138, 29-36 (1982).   DOI
25 M. Velazquez-Manzanares, J. Amador-Hernandez, C. Cisneros-Cisneros, and K. A. Heredia-Lezama, Triazine herbicides transfer at the water/1,2-dichloroethane interface, J. Electrochem. Soc., 155, 218-222 (2008).
26 M. Zhang, P. Sun, Y. Chen, F. Li, Z. Gao, and Y. Shao, Study of ionizable drugs transfer across the water/1,2-dichloroethane interface with phase volume ratio equal to unity using a three-electrode system, Chin. Sci. Bull., 48, 1234-1239 (2003).
27 M. Zhang, P. Sun, Y. Chen, F. Li, Z. Gao, and Y. Shao, Studies of effect of phase volume ratio on transfer of ionizable species across the water/1,2-dichloroethane interface by a three-electrode setup, Anal. Chem., 75, 4341-4345 (2003).   DOI
28 F. Reymond, G. Steyaert, P.-A. Carrupt, B. Testa, and H. H. Girault, Mechanism of transfer of a basic drug across the water/l,2-dichloroethane interface: The case of quinidine, Helv. Chim. Acta, 79, 101-117 (1996).   DOI
29 F. Reymond, G. Steyaert, P.-A. Carrupt, D. Morin, J.-P. Tillement, H. H. Girault, and B. Testa, The pH-partition profile of the anti-ischemic drug trimetazidine may explain its reduction of intraellular acidosis, Pharm. Res., 16, 616-624 (1999).   DOI
30 F. Reymond, G. Steyaert, P.-A. Carrupt, B. Testa, and H. Girault, Ionic partition diagrams: A potential-pH representation, J. Am. Chem. Soc., 118, 11951-11957 (1996).   DOI
31 I. Hatay, B. Su, F. Li, M. A. Mendez, T. Khoury, C. P. Gros, J.-M. Barbe, M. Ersoz, Z. Samec, and H. H. Girault, Proton- coupled oxygen reduction at liquid-liquid interfaces catalyzed by cobalt porphine, J. Am. Chem. Soc., 131, 13453-13459 (2009).   DOI
32 G. Bouchard, A. Pagliara, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Theoretical and experimental exploration of the lipophilicity of zwitterionic drugs in the 1,2-dichloroethane/ water system, Pharm. Res., 19, 1150-1159 (2002).   DOI
33 G. Bouchard, A. Pagliara, G. P. van Balen, P.-A. Carrupt, B. Testa, V. Gobry, H. H. Girault, G. Caron, G. Ermondi, and R. Fruttero, Ionic partition diagram of the zwitterionic antihistamine cetirizine, HeIv. Chim. Acta, 84, 375-387 (2001).   DOI
34 A. Nasal, D. Siluk, and R. Kaliszan, Chromatographic retention parameters in medicinal chemistry and molecular pharmacology, Curr. Med. Chem., 10, 381-426 (2003).   DOI
35 D. Dellis, C. Giaginis, and A. Tsantili-Kakoulidou, Physicochemical profile of nimesulide exploring the interplay of lipophilicity, solubility and ionization, J. Pharm. Biomed. Anal., 44, 57-62 (2007).   DOI
36 C. B. Fox, R. A. Horton, and J. M. Harris, Detection of drug-membrane interactions in individual phospholipid vesicles by confocal Raman microscopy, Anal. Chem., 78, 4918-4924 (2006).   DOI
37 G. Bouchard, P.-A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Lipophilicity and solvation of anionic drugs, Chem. Eur. J., 8, 3478-3484 (2002).   DOI
38 F. Reymond, V. Chopineaux-Courtois, G. Steyaert, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Ionic partition diagrams of ionisable drugs: pH-lipophilicity profiles, transfer mechanisms and charge effects on solvation, J. Electroanal. Chem., 462, 235-250 (1999).   DOI
39 V. Chopineaux-Courtois, F. Reymond, G. Bouchard, P.-A. Carrupt, B. Testa, and H. H. Girault, Effects of charge and intramolecular structure on the lipophilicity of nitrophenols, J. Am. Chem. Soc., 121, 1743-1747 (1999).   DOI
40 R. P. Nia, B. Su, M. A. Mendez, J.-M. Barbe, Z. Samec, and H. H. Girault, Ionic partition diagram of tetraphenylporphyrin at the water/1,2-dichloroethane interface, J. Electroanal. Chem., 656, 147-151 (2011).   DOI
41 K. Tsuchiya, M. Kida, M. Kondo, H. Ono, M. Takeuchi, and T. Nishi, SCE-963, a new broad-spectrum cephalosporin: In vitro and in vivo antibacterial activities, Antimicrob. Agents Chemother., 14, 551-568 (1978).