• Title/Summary/Keyword: potential theory

Search Result 1,529, Processing Time 0.034 seconds

Computational Study of the Molecular Structure, Vibrational Spectra and Energetics of the OIO Cation

  • Lee, Sang-Yeon
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.12
    • /
    • pp.1855-1858
    • /
    • 2004
  • Molecular geometries for the cationic and neutral species of OXO (X=Cl, Br, and I) are optimized using the Hartree-Fock (HF) theory, the second order Moller-Plesset perturbation theory (MP2), the density functional theory with the B3LYP hybrid functional (B3LYP), and the coupled cluster theory using single and double excitation with a perturbational treatment of triplet excitation (CCSD[T]) methods, with two basis sets of triple zeta plus polarization quality. The single point calculations for these species are performed at the CCSD(T,Full) level. The harmonic vibrational frequencies for these species are calculated at the HF, MP2, B3LYP and CCSD(T) levels. The adiabatic ionization potential for OIO is calculated to be 936.7 kJ/mol at the CCSD(T,Full) level and the correct value is estimated to be around 945.4 kJ/mol.

Hull form Design and Application of CFD Techniques (선형설계와 수치계산기법 응용)

  • Kang K. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.9-14
    • /
    • 2000
  • Computational methods can be classified roughly into two parts: one is the methods based on a potential flow theory, and the other is numerical solvers(CFD) based on Navier-Stockes equation. Methods based on a potential theory are more effective than CFD when the free surface effect is considered. Especially Rankine source method seems to become widespread for simulations of wave making problems. For computations of viscous flow problems, CFD techniques have rapidly been developed and have shown many successful results in the viscous flow calculation. Present paper introduces a computational system 'WAVIS' which includes a pre-processor, potential ant viscous flow solvers and a post-processor. To validate the system, the calculated results for modem commercial hull forms are compared with measurements. It is found that the results from the system are in good agreement with the experimental data, illustrating the accuracy of the numerical methods employed for WAVIS.

  • PDF

On the Influence of the Moment of Inertia of Gas on the Galactic Rotation Curves

  • Portnov, Yuriy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.99-108
    • /
    • 2022
  • There are two models that explain the rotation curves of galaxies: dark matter, which gives the missing contribution to the gravitational potential of the standard theory of gravity, and modified theories of gravity, according to which the gravitational potential is created by ordinary visible mass. Both models have some disadvantages. The article offers a new look at the problem of galactic rotation curves. The author suggests that the moment of inertia creates an additional gravitational potential along with the mass. The numerical simulation carried out on the example of fourteen galaxies confirms the validity of such an assumption. This approach makes it possible to explain the constancy of gas velocities outside the galactic disk without involving the hypothesis of the existence of dark matter. At the same time, the proposed approach lacks the disadvantages of modified theories of gravity, where the gravitational potential is created only by the mass of visible matter.

LAYERWISE FORMULATION OF PIEZOELECTRIC LAMINATED COMPOSITES

  • Lee, Jaehong-;Ham, Hee-Jung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.121-128
    • /
    • 1994
  • A layerwise theory for the dynamic response of a laminated composite plate with integrated piezoelectric actuators and sensors subjected to both mechanical and electrical loadings is proposed. The formulation is derived form the variational principle with consideration for both total potential energy of the structures and the electrical potential energy of the piezoceramics. The governing equations of the present theory account for direct and converse effects of piezoelectrics, and layerwise variation of displacement field through the thickness of a laminate.

  • PDF

Mode I Field Intensity Factors of Infinitely Long Strip in Piezoelectric Media

  • Kwon, Soon-Man;Lee, Kang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.845-850
    • /
    • 2000
  • We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing a Griffith crack under in-plane normal loading within the framework of linear piezoelectricity. The potential theory method and Fourier transforms are used to reduce the problem to the solution of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the field intensity factors are obtained, and the influences of the electric fields for PZT-6B piezoelectric ceramic are discussed.

  • PDF

Theoretical Investigation of Edge-modified Zigzag Graphene Nanoribbons by Scandium Metal with Pyridine-like Defects: A Potential Hydrogen Storage Material

  • Mananghaya, Michael
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.253-256
    • /
    • 2014
  • Functionalization of zigzag graphene nanoribbon (ZGNR) segment containing 120 C atoms with pyridine (3NV-ZGNR) defects was investigated on the basis of density-functional theory (DFT) calculations, results show that edge-modified ZGNRs by Sc can adsorb multiple hydrogen molecules in a quasi-molecular fashion, thereby can be a potential candidate for hydrogen storage. The stability of Sc functionalization is dictated by a strong binding energy, suggesting a reduction of clustering of metal atoms over the metal-decorated ZGNR.

An Empirical Study on the Cognitive Biases of The Korea Real Estate Market Through the Testing of Prospect Theory (전망이론 검증을 통한 부동산투자자들의 인지적 편의에 관한 연구)

  • Jeong, Seong Hoon;Park, Keun Woo
    • Korea Real Estate Review
    • /
    • v.27 no.1
    • /
    • pp.7-16
    • /
    • 2017
  • In this study, we examine whether there are prospect theory investment patterns for individual investors in the real estate market. We use the maximum potential profit rate and the maximum potential loss rate of individual investors as a research method and additionally analyze it using the Jeong and Park(2015) model. As a result of the analysis, it was found that the investment pattern according to the prospect theory and disposition effect for individual investors. And we find the difference between zoning areas. This difference in investment behavior is believed to be due to the purpose of the real estate and the existence of rent fee, which creates a difference in investment behavior depending on the purpose. The limitations of this study are the analysis measurement of potential profit and potential loss using the land price index like the study of jeong and Park(2015). This implies that a new property price index needs to be developed or a benchmark for real estate assets is needed for deeper study of real estate investment sentiment.

A Potential-Based Panel Method for the Analysis of A Two-Dimensional Super-Cavitating Hydrofoil (양력판(揚力板) 이론(理論)에 의(依)한 2차원(次元) 수중익(水中翼)의 초월(超越) 공동(空洞) 문제(問題) 해석(解析))

  • Y.G. Kim;C.S. Lee;J.T. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.159-173
    • /
    • 1991
  • This paper describes a potential-based panel method formulated for the analysis of a super-cavitating two-dimensional hydrofoil. The method employs normal dipoles and sources distributed on the foil and cavity surfaces to represent the potential flow around the cavitating hydrofoil. The kinematic boundary condition on the wetted portion of the foil surface is satisfied by requiring that the total potential vanish in the fictitious inner flow region of the foil, and the dynamic boundary condition on the cavity surface is satisfied by requiring thats the potential vary linearly, i.e., the tangential velocity be constant. Green's theorem then results in a potential-based integral equation rather than the usual velocity-based formulation of Hess & Smith type. With the singularities distributed on the exact hydrofoil surface, the pressure distributions are predicted with improved accuracy compared to those of the linearized lilting surface theory, especially near the leading edge. The theory then predicts the cavity shape and cavitation number for an assumed cavity length. To improve the accuracy, the sources and dipoles on the cavity surface are moved to the newly computed cavity surface, where the boundary conditions are satisfied again. This iteration process is repeated until the results are converged. Characteristics of iteration and discretization of the present numerical method are much faster and more stable than the existing nonlinear theories. The theory shows good correlations with the existing theories and experimental results for the super-cavitating flow. In the region of small angles of attack, the present prediction shows and excellent comparison with the Geurst's linear theory. For the long cavity, the method recovers the trends of the Wu's nonlinear theory. In the intermediate regions of the short super-cavitation, the method compares very well with the experimental results of Parkin and also those of Silberman.

  • PDF