• Title/Summary/Keyword: potential hazardous

Search Result 280, Processing Time 0.023 seconds

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Hazardous and Noxious Substances(HNS) Risk Assessment and Accident Prevention Measures on Domestic Marine Transportation (국내 위험·유해물질(HNS) 해상운송사고 위험도 분석 및 사고 저감방안 연구)

  • Cho, Sim-Jung;Kim, Dong-Jin;Choi, Kang-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2013
  • HNS, including crude oil and products, shipments have increased. The risk analysis of HNS has assumed the importance, especially in maritime transportation area. There are various forms and kinds of HNS and the consequences of an accident are serious. In order to provide practical measures for preventing accidents, this study analyses the potential risks of HNS on maritime transportation accidents at domestic sea by using Event Tree Analysis. This study carries out risk assessment with F-N curve and risk matrix focusing on liquid cargo carriers (Oil and Products Tanker, Chemical Tanker, LPG/LNG Tanker, etc.). Explosion and sinking, suffocation indicate high consequence when on collision represent high probability. Improving human errors should be the main factor to mitigate risk on human lives.

Development of Primary Standard Gas Mixtures of Fourteen Volatile Organic Compounds in Hazardous Air Pollutants for Accurate Ambient Measurements in Korea (at 1 μmol/mol Levels) (유해대기오염물질 중 14종의 휘발성유기화합물 1차 표준가스개발 (1 μmol/mol 수준))

  • Kang, Ji Hwan;Kim, Young Doo;Kim, Mi Eon;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.2
    • /
    • pp.331-341
    • /
    • 2018
  • Hazardous air pollutants(HAPs) in the atmosphere are regulated as major air pollutants in Korea by the Air Pollution Control Act. In order to manage and control HAPs, accurate standards, which are traceable to the International System of Units(SI), are required. In this study, primary standard gas mixtures(PSMs) of volatile organic compounds(VOCs) which are specified as HAPs were developed at $1{\mu}mol/mol$ levels. The selected fourteen VOCs include Benzene, Toluene, Ethylbenzene, m-Xylene, Styrene, o-Xylene, Chloroform, 1,1,2-Trichloroethane, Trichloroethylene, Tetrachloroethylene, 1,1-Dichloroethane, Carbon tetrachloride, 1,3-Butadiene, and Dichloromethane. The HAPs PSMs were gravimetrically prepared in aluminum cylinders and their consistency was verified within the relative expanded uncertainty of 0.71% (k=2). Potential adsorption loss onto the internal surface of cylinders was estimated by cylinder-to-cylinder division method. No adsorption loss was observed within the uncerainty of 0.53%. The long-term stability of the HAPs PSMs was evaluated comparing with freshly prepared HAPs PSMs. The HAPs PSMs were stable for one year within the uncertainty of 0.38%. The final uncertainty of the PSMs was determined by combining the preparation uncertainty, verification uncertainty, and stability uncertainty. Finally, traceable and stable HAPs PSMs at $1{\mu}mol/mol$ levels were developed with the uncertainty of less than 0.76% in high-pressure aluminum cylinders.

Risk Assessment of Aldehydes and Volatile Organic Compounds in the National Library of Korea Archive (국립중앙도서관 귀중서고 내 알데히드류 및 휘발성유기화합물(VOCs)에 대한 건강위해성평가)

  • Lee, Hye-Won;Lim, Hui Been;Lee, Kwi-Bok;Park, So Yeon;Jeon, Jeong In;Lee, Cheol Min
    • Journal of Environmental Science International
    • /
    • v.29 no.6
    • /
    • pp.673-682
    • /
    • 2020
  • This study investigates the concentration distribution of aldehydes and volatile organic compounds (VOCs) in the archive of the National Library in Korea and evaluates the health risks to workers from hazardous chemicals. Acetaldehyde had the highest concentration among the nine species of aldehydes present in the archive and the concentration of toluene was the highest among the six species of VOCs. Most of the detected substances showed that their indoor concentrations were higher than the outdoor ones, suggesting the possibility of indoor sources of aldehydes and VOCs. The evaluation of health risks for workers based on these measurement results showed that not all substances were hazardous to the human body. However, considering the possibility of the presence of indoor sources and the potential limits of our study owing its short period, it is necessary to conduct long-term studies on the concentration distribution of indoor pollutants in the archive environment.

Development of the Efficient Synthetic Route for Itraconazole Antifungal Agent (이트라코나졸 항진균제의 효과적인 합성법 개발)

  • Baek, Du-Jong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.633-637
    • /
    • 2006
  • In this study, the efficient large-scale synthetic route for itraconazole, triazole antifungal agent, was developed. The original synthetic route for medicinal chemistry reported by Janssen Pharmaceutica was linear (14 linear steps) starting from 2,4-dichloroacetophenone with the total yield of 1.4%, and potential hazardous materials such as methanesulfonyl chloride ($CH_{3}SO_{2}Cl$), hydrogen gas, and sodium hydride (NaH) were used. Furthermore, the expensive 1-acetyl-4-(4-hydroxyphenyl)piperazine and palladium were used in this medicinal chemistry route, thus the manufacturing cost would be practically high. In order to improve the commercial route, we developed the process of 12 step convergent synthesis combining two intermediates which are roughly halves of itraconazole with the total yield of 12.0%, and hazardous materials and expensive reagents were excluded in this process, thus the manufacturing cost could be cut down to a great extent.

Characteristic studies of coal power plants ash sample and monitoring of PM 2.5

  • Thriveni., T;Ramakrishna., CH;Nam, Seong Young;kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.45-56
    • /
    • 2017
  • Coal power plants produce electricity for the nation's power grid, but they also produce more hazardous air emissions than any other industrial pollution sources. The quantity is staggering, over 386,000 tons of 84 separate hazardous air pollutants spew from over 400 plants in 46 states. In South Korea also, annual coal ash generation from coal-fired power plants were about 6 million tons in 2015. Pollutants containing particulate matter 10, 2.5 (PM10, PM2.5), heavy metals and dioxins from coal-fired power plant. The emissions threaten the health of people who live near these power plants, as well as those who live hundreds of miles away. These pollutants that have long-term impacts on the environment because they accumulate in soil, water and animals. The present study is to investigate the physical and chemical characteristics of coal-fired power plant fly ash and bottom ash contains particulate matter, whose particulate sizes are lower than $PM_{10}$ and $PM_{2.5}$ and heavy metals. There are wide commercial technologies were available for monitoring the PM 2.5 and ultra-fine particles, among those carbonation technology is a good tool for stabilizing the alkaline waste materials. We collected the coal ash samples from different coal power plants and the chemical composition of coal fly ash was characterized by XRF. In the present laboratory research approach reveals that potential application of carbonation technology for particulate matter $PM_{10}$, $PM_{2.5}$ and stabilization of heavy metals. The significance of this emerging carbonation technology was improving the chemical and physical properties of fly ash and bottom ash samples can facilitate wide re use in construction applications.

Tafel Characteristics by Electrochemical Reaction of SnAgCu Pb-Free Solder (SnAgCu계 무연솔더의 전기화학적 반응에 따른 타펠 특성)

  • Hong Won Sik;Kim Kwang-Bae
    • Korean Journal of Materials Research
    • /
    • v.15 no.8
    • /
    • pp.536-542
    • /
    • 2005
  • Recently European Council(EU) published the RoHS(restriction of the use of certain hazardous substances in electrical and electronic equipment) which is prohibit the use of Pb, Hg, Cd, $Cr^{+6}$, PBB or PBDE in the electrical and electronic equipments. So EU member States shall ensure that, from 1 July 2006, new electrical and electronic equipment put on the market does not contain 6 hazardous substances. The one of the most important in electronics manufacturing process is soldering. Soldering process use the chemical substances which are applied in fluxing and cleaning processes and it can generate the malfunction of electronics caused by corrosion in the fields conditions. Therefore this study researched on the polarization and Tafel properties of Sn40Pb and Sn3.0Ag0.5Cu(SAC) solder based on the electrochemical theory. We prepared SnPb specimens which was aged in $150^{\circ}C,\;180^{\circ}C$ for 15 minutes ana Sn3.0Ag0.5Cu specimens that was aged in $180^{\circ}C,\;220^{\circ}C$ for 10 minutes. Experimental polarization curves were measured in distilled ionized water and $3.5 wt\%$, 1 mole NaCl electrolyte of $40^{\circ}C$, pH 7.5. Ag/AgCl and graphite were utilized by reference and counter electrode, respectively. To observe the electrochemical reaction, polarization test was conducted from -250 mV to +250 mV. From the polarization curves that were composed of anodic and cathodic curves, we obtained Tafel slop, reversible electrode potential(Ecorr) and exchange current density(Icorr). In these results, corrosion rate for two specimen were compared Sn3.0Ag0.5Cu with SnPb solders

DEEP-South: Preliminary Lightcurve Analysis of Potentially Hazardous Asteroids (PHAs)

  • Kim, Myung-Jin;Moon, Hong-Kyu;Choi, Young-Jun;Yim, Hong-Suh;Park, Jintae;Roh, Dong-Goo;Lee, Hee-Jae;Oh, Young-Seok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2016
  • Near Earth Asteroid (NEA) population has attracted keen attention not only from the scientific community but from the general public ever since their terrestrial impact risk achieved wide recognition. Potentially Hazardous Asteroids (PHAs), the subset of NEAs, recently became the center of interest of planetary defense folks and mining industry due to their proximity to, and the potential effects on planet Earth. However, we have long been ignorant about either the physical properties or dynamical source regions of individual objects. For instance, their rotational periods are only known for five percent of the total population (The NEA Database of DLR, updated on Feb 2016). The primary scientific objective of DEEP-South (DEep Ecliptic Patrol of the Southern sky) is to physically characterize 70 percent of km-class PHAs until 2019. In order to achieve this goal, we implemented an observation mode so-called "OC (Opposition Census)" targeting objects around opposition. OC observations were conducted during the period between Feb 2015 and Mar 2016, at CTIO in early periods, and at three KMTNet stations (CTIO, SSO and SAAO) since late July 2015, excluding the "bulge season" when the telescope time is exclusively used for exoplanet search. We present the preliminary lightcurves of 66 PHAs and 59 NEAs that we obtained during the OC runs.

  • PDF

Molecular/biochemical Biomarkers for Exposure to Hazardous Chemicals in the Water Environment and their Application to Freshwater Fish (유해물질 노출로 인한 분자.생화학적 바이오마커와 담수 어류에 대한 현장 적용성)

  • Kim, Jung-Kon;Park, Ye-Na;Kim, Woo-Keun;Kim, Ji-Won;Lee, Sung-Kyu;Choi, Kyung-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.418-434
    • /
    • 2010
  • As concerns regarding water pollution grow, the need increases for a fast and accurate assessment of ecological risk. In this context, many studies have been conducted to identify biomarkers which can sensitively indicate exposure to and effects of various contaminants in a water environment. However, the utility of most such biomarkers in the real water environment is not yet validated. In this paper, we conducted a thorough review of publications that were related to developing or evaluating molecular and biochemical biomarkers of freshwater fish in ecological risk assessment, and evaluated whether these biomarkers of interest could link to the effects on higher biological levels, such as histopathology and above. Biomarkers of interest included those associated with metabolism, oxidative stress, reproduction and endocrine disruption, genotoxicity, and defense against heavy metal exposure. We found that, when used alone, most molecular and biochemical biomarkers are not sufficient to understand the effects of toxic substances in higher biological levels, due to defense or acclimation mechanisms of organisms. Moreover, some biomarkers respond not only to hazardous substances but also to the changes in water quality and disease outbreak. Molecular and biochemical biomarkers may be most useful in understanding the potential biological effects of toxic compounds when used in parallel with relevant endpoints of higher biological levels.

Synthesis and Characterization of Water-borne Pressure Sensitive Adhesives Polymerized using Styrenated Phenol Type Surfactants (스티렌페놀계 계면활성제 기반 친환경 수계 점착제 합성 및 특성 분석)

  • Song, Young Kyu;Lee, Sang-Ho;Park, Young Il;Kim, Jin Chul
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.156-161
    • /
    • 2020
  • Waterborne pressure sensitive adhesives (PSA) has been received much attentions from both academia and industries as an environmental friendly-technology because it can significantly reduce use of hazardous organic volatile solvents. However, in the process of the mass production of waterborne PSAs, hazardous phenol type amphiphilic compounds have essentially been used as surfactants for the emulsion polymerization. For the reason, tremendous research efforts have been made to develop environment-friendly organic surfactant which can replace the phenol type surfactants. In this study, we verify the potential of a new class of surfactants based on the styrenated phenol derivatives as an alternative to the phenol type surfactants.