• Title/Summary/Keyword: potential hazardous

Search Result 280, Processing Time 0.026 seconds

A Study on Process Safety Incident Precursors to Prevent Major Process Safety Incidents in the Yeosu Chemical Complex

  • Baek, Seung-Hyun;Kwon, Hyuck-Myun;Byun, Hun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.212-221
    • /
    • 2018
  • Process safety incidents and loss events can be prevented if we identify and adequately take measures on process safety incident precursors in a timely manner. If we look into and take action against the process safety hazard factors causing the incident in the refinery and petrochemical plant, major process safety incidents can be prevented through eliminating or decreasing hazardous factors. We conducted a survey for the major process safety incident precursor to look specifically into the potential process safety hazardous factors of refineries and petrochemical plants in the Yeosu chemical complex. A self-assessment checklist, which was published by Center for Chemical Process Safety "Recognizing catastrophic incident warning signs in the process industry" on major incidents warning sign, was used for the survey. Through this survey, the major process safety incident leading indicators in the process industry were found by process safety management elements, and each site and/or facility can use these leading indicators for activities for process safety incident prevention. In addition, we proposed action items required to eliminate the root cause of those process safety incident leading indicators.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

A Study on Risk Analysis of Human Loss and Environmental Damage Caused by Hazardous Materials (Oil and HNS) Marine Accidents (위험물질(유류·HNS) 해양사고 인명 및 환경피해 위험도 분석에 관한 연구)

  • Cho, Simjung;Kim, Dongjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.603-612
    • /
    • 2017
  • Accidents associated with hazardous materials, including oil and HNS, in maritime transportation show increasing trend. Therefore, preventive countermeasures for such accidents should be provided. The purpose of this study is to analyze level of risk on human loss and potential damage to environment, using data on domestic marine accidents carrying hazardous materials (2002~2014), and identify high-risk accident types for urgent risk management which needs findings of accident causes and proper mitigation measures. High-risks on human loss are explosion and suffocation, occurred in process of ship maintenance and tank cleaning. On the other hand, high-risk on environmental damage is spill caused by ship accidents (collision, grounding and etc.). Especially, spill occurs during loading operation of oil and HNS onboard a ship. Strict operation supervision/management and safety education/training on a regular basis could prevent accidents, because human factors such as not wearing safety gear and careless cargo handling cause most of the marine accidents.

An Overview of Current Trends of Studies about Environmental Health Indicators in Korea (우리나라 환경보건지표 개발 과정과 활용)

  • Lee, Jong-Tae
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.2
    • /
    • pp.71-80
    • /
    • 2014
  • Objectives: The main purpose of this review is to introduce the current status of environmental health indicators of Korea and to share our experience of the developmental process of Korean version of environmental health indicators. Methods: This paper describes 1) the background of environmental health indicators; 2) the ways how we developed environmental health indicators of Korea; 3) the current status of selected indicators; and 4) suggestions for the further policy development. Results: The 6-year long project for the development of environmental health indicator systems in Korea could provide outputs on three major distinct aspects on the indicator issues. Firstly, we have developed the rational process/manual so that the government can select and advocate the potential indicators with a relatively objective manner. Secondly, we have suggested the potential candidate indicators which can be implemented immediately. We also pooled all indicators in order to evaluate the summary index which we expect to tell the status of environmental health. Third, we provided suggestions on the further utilization of this indicator system. Conclusion: The mission of environmental health policy is to resolve the public health problems occurring because of hazardous environment. In order to identify the environmental determinants of the community health problems and to evaluate the effectiveness of the policy implemented, these environmental indicators can be used. Therefore, the government should implement this ready-prepared system of environmental health indicators.

Laboratory-scale Microcosm Studies in Assessing Enhanced Bioremediation Potential of BTEX and MTBE under Various Electron Acceptors in Contaminated Soil

  • 오인석;이시진;장순웅
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.368-371
    • /
    • 2003
  • Accidental release of petroleum products from underground storage tank(USTs) is one of the most common causes of groundwater contamination. BTEX is the major components of fuel oils, which are hazardous substances regulated by many nations. In addition to BTEX, other gasoline consituents such as MTBE(methyl-t-buthyl ether), anphthalene are also toxic to humans. Natual attenuation processes include physic, chemical, and biological trasformation. Aerobic and anaerobic biodegradation are believed to be the major processes that account for both containment of the petroleum-hydrocarbon plum and reduction of the contaminant concentrations. Aerobic bioremediation has been highly effective in the remediation of many fuel releases. However, Bioremediation of aromatic hydrocarbons in groundwater and sediments is ofen limited by the inability to provide sufficient oxygen to the contaminated zones due to the low water solubility of oxygen. Anaerobic processes refer to a variety of biodegradation mechanisms that use nitrate, ferric iron, sulfate, and carbon dioxide as terminal electron accepters. The objectives of this study was to conduct laboratory-scale microcosm studies in assessing enhanced bioremediation potential of BTEX and MTBE under various electron accepters(aerobic, nitrate, ferric iron, sulfate) in contaminated Soil. these results suggest that, presents evidence and a variety pattern of the biological removal of aromatic compounds under enhanced nitrate-, Fe(III)-, sulfate-reducing conditions.

  • PDF

Pollutant Release from Crushed Reclaimed Concrete (폐콘크리트 재생골재로부터의 오염물질 용출에 대한 실험적 고찰)

  • Hong, Seong-Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.1
    • /
    • pp.71-77
    • /
    • 2005
  • Recycling of reclaimed concrete (RC) is very important in the management of construction and demolition wastes. Most of RC is utilized for land-filling after crushing in this country. In this study, a series of elution experiments were conducted to investigate the type and amount of pollutants released from the crushed RC. Most water quality parameters including heavy metals and some organic compounds were below standards for drinking water. Some of heavy metals such as As, Cd, Pb, Hg were detected in 0.5 N H2S04 solution after 24-hour immersing RC, which was conducted for evaluating a long term release effect. The concentration of the heavy metals were higher than the drinking water standards. The results also showed significant adsorption of heavy metals by crushed Re. Potential risks, based on the result of this study were not high in using crushed RC for land-filling. Appropriate management of RC would reduce the risk, for example the separation of hazardous materials from construction wastes. Long term evaluations for the sites of land filled with RC would be required to assess the environmental impacts.

Formulation of a novel bacterial consortium for the effective biodegradation of phenol

  • Dhanya, V.
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.109-121
    • /
    • 2020
  • Phenol is frequently present as the hazardous pollutant in petrochemical and pesticide industry wastewater. Because of its high toxicity and carcinogenic potential, a proper treatment is needed to reduce the hazards of phenol carrying effluent before being discharged into the environment. Phenol biodegradation with microbial consortium offers a very promising approach now a day's. This study focused on the formulation of phenol degrading bacterial consortium with three bacterial isolates. The bacterial strains Bacillus cereus strain VCRC B540, Bacillus cereus strain BRL02-43 and Oxalobacteraceae strain CC11D were isolated from detergent contaminated soil by soil enrichment technique and was identified by 16s rDNA sequence analysis. Individual cultures were degrade 100 μl phenol in 72 hrs. The formulated bacterial consortium was very effective in degrading 250 μl of phenol at a pH 7 with in 48 hrs. The study further focused on the analysis of the products of biodegradation with Fourier Transform Infrared Spectroscopy (FT/IR) and Gas Chromatography-Mass Spectroscopy (GC-MS). The analysis showed the complete degradation of phenol and the production of Benzene di-carboxylic acid mono (2-ethylhexyl) ester and Ethane 1,2- Diethoxy- as metabolic intermediates. Biodegradation with the aid of microorganisms is a potential approach in terms of cost-effectiveness and elimination of secondary pollutions. The present study established the efficiency of bacterial consortium to degrade phenol. Optimization of biodegradation conditions and construction of a bioreactor can be further exploited for large scale industrial applications.

Arsenic Detoxification by As(III)-Oxidizing Bacteria: A Proposition for Sustainable Environmental Management

  • Shamayita Basu;Samir Kumar Mukherjee;Sk Tofajjen Hossain
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Arsenic (As), which is ubiquitous throughout the environment, represents a major environmental threat at higher concentration and poses a global public health concern in certain geographic areas. Most of the conventional arsenic remediation techniques that are currently in use have certain limitations. This situation necessitates a potential remediation strategy, and in this regard bioremediation technology is increasingly important. Being the oldest representativse of life on Earth, microbes have developed various strategies to cope with hostile environments containing different toxic metals or metalloids including As. Such conditions prompted the evolution of numerous genetic systems that have enabled many microbes to utilize this metalloid in their metabolic activities. Therefore, within a certain scope bacterial isolates could be helpful for sustainable management of As-contamination. Research interest in microbial As(III) oxidation has increased recently, as oxidation of As(III) to less hazardous As(V) is viewed as a strategy to ameliorate its adverse impact. In this review, the novelty of As(III) oxidation is highlighted and the implication of As(III)-oxidizing microbes in environmental management and their prospects are also discussed. Moreover, future exploitation of As(III)-oxidizing bacteria, as potential plant growth-promoting bacteria, may add agronomic importance to their widespread utilization in managing soil quality and yield output of major field crops, in addition to reducing As accumulation and toxicity in crops.

Software Risk Management and Cyber Security for Development of Integrated System Remotely Monitoring and Controlling Ventilators (인공호흡기 원격 통합 모니터링 및 제어 시스템 개발을 위한 소프트웨어 위험관리 및 사이버보안)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.99-108
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.

Integration of BIM and Simulation for optimizing productivity and construction Safety

  • Evangelos Palinginis;Ioannis Brilakis
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.21-27
    • /
    • 2013
  • Construction safety is a predominant hindrance in in-situ workflow and considered an unresolved issue. Current methods used for safety optimization and prediction, with limited exceptions, are paper-based, thus error prone, as well as time and cost ineffective. In an attempt to exploit the potential of BIM for safety, the objective of the proposed methodology is to automatically predict hazardous on-site conditions related to the route that the dozers follow during the different phases of the project. For that purpose, safety routes used by construction equipment from an origin to multiple destinations are computed using video cameras and their cycle times are calculated. The cycle times and factors; including weather and light conditions, are considered to be independent and identically distributed random variables (iid); and simulated using the Arena software. The simulation clock is set to 100 to observe the minor changes occurring due to external parameters. The validation of this technology explores the capabilities of BIM combined with simulation for enhancing productivity and improving safety conditions a-priori. Preliminary results of 262 measurements indicate that the proposed methodology has the potential to predict with 87% the location of exclusion zones. Also, the cycle time is estimated with an accuracy of 89%.

  • PDF