• Title/Summary/Keyword: potential error

Search Result 724, Processing Time 0.028 seconds

Potential Errors in Committed Effective Dose Due to the Assumption of a Single Intake Path in Interpretation of Bioassay Results (바이오어세이 결과 해석에서 단일 섭취경로 가정에 따르는 예탁유효선량의 잠재오차)

  • Lee, Jong-Il;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.31 no.3
    • /
    • pp.135-140
    • /
    • 2006
  • Intakes of radionuclides through both inhalation and ingestion pathways may occur particularly in an incident involving unsealed radionuclides. If one assume only one intake path in this case, which is usual in routine monitoring, a significant error in the evaluated committed effective dose($E_{50}$) may result. In order to demonstrate the potential errors, variations of the resulting committed effective doses were analyzed for different fractions of the inhaled activities to the total intake of $^{241}Am$. Simulated bioassav measurements for the lungs, urine and feces were generated based on the biokinetic model and data of the radionuclide, 5 ${\mu}m$ AMAD and absorption type M for inhalation, for various inhalation fractions. The potential errors in $E_{50}$ due to the assumption of one intake path were in the range from -100% to as large as +34,000% when the bioassays were made 3 days after the intakes. Larger errors are expected when only the feces assay is applied while inhalation intake exists. A strategy which employs two types of bioassay was proposed to reduce the error caused by a misjudgement of the intake path.

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

Multivariable Bayesian curve-fitting under functional measurement error model

  • Hwang, Jinseub;Kim, Dal Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.6
    • /
    • pp.1645-1651
    • /
    • 2016
  • A lot of data, particularly in the medical field, contain variables that have a measurement error such as blood pressure and body mass index. On the other hand, recently smoothing methods are often used to solve a complex scientific problem. In this paper, we study a Bayesian curve-fitting under functional measurement error model. Especially, we extend our previous model by incorporating covariates free of measurement error. In this paper, we consider penalized splines for non-linear pattern. We employ a hierarchical Bayesian framework based on Markov Chain Monte Carlo methodology for fitting the model and estimating parameters. For application we use the data from the fifth wave (2012) of the Korea National Health and Nutrition Examination Survey data, a national population-based data. To examine the convergence of MCMC sampling, potential scale reduction factors are used and we also confirm a model selection criteria to check the performance.

Effect of the Current Probe Position on Ground Resistance Measurement Using Fall-of-Potential Method (전위강하법에 의한 접지저항 측정에 미치는 전류보조전극의 위치의 영향)

  • Lee, B.H.;Eom, J.H.;Kim, S.W.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1874-1876
    • /
    • 2000
  • In this paper, the effects of the positions of the current probe on the measurements of the ground resistanc, and potential gradients with fall-of-potential method are described, and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position of the measuring auxiliary probes. The ground resistance is calculated by applying the 61.8% lute using fall-of-potential method.

  • PDF

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

5-Axis Cross-Coupling Control System Based on a Novel Real-Time Tool Orientation Error Model (새로운 실시간 공구방향오차 모델에 기초한 5 축 연동제어 시스템)

  • Byun, Je-Hyung;Jee, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.48-53
    • /
    • 2010
  • 5-axis CNC machining now is getting popular because it can deal with complex shapes such as impeller, turbine blade and propeller without additional equipment or process, proving a set of various tool orientations. CAM software related to 5-axis machining is being developed quickly so that users can take advantage of potential capacities of 5-axis machine tools. However, only a few researches can be found in the area of control strategy development for 5-axis machining. This paper proposes a 5-axis cross-coupling control system based on a novel tool orientation error model. The proposed tool orientation error model provides accurate information on the tool orientation error in real time, which in turn enables directly controlling the tool orientation accuracy. The proposed control system also employs a contour error model to calculate the contour error and reflect it in the control as well. The accuracy of the proposed tool orientation error model is verified and the performance of the 5-axis cross-coupling control system in terms of both contouring and tool orientation accuracy is evaluated through computer simulations compared with existing 5-axis control systems.

Performance Analysis of Convolution coded 16 QAM Signal with Maximum Ratio Combining Diversity in Rician Fading and Impulsive Noise Environments (라이시안 페이딩과 임펄스 잡음이 존재하는 환경에서 최대비 합성 다이버시티 기법과 길쌈 부호화 기법을 채용한 16 QAM 신호의 성능해석)

  • Kim, Kwang-Rak;Lee, Ho-Young;Kim, Eon-Gon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.663-668
    • /
    • 2008
  • In this paper, we analyzed the error rate Performance of convolution coded 16 QAM signal in impulsive noise Environments. We used convolution rode and maximum ratio combining diversity for performance improvement. We analyzed the error rate performance of 16 QAM signal in implusive noise environments compared with gaussian noise environments. As a result of analysis, there is a BER segment where the efficiency of system does not improve until which limit to raise a signal power potential from impulsive noise environment when the signal power potential which goes over this limit is supplied, BER efficiency improve much more.

  • PDF

Evaluation of Errors Due to Earth Mutual Resistance in Measuring Ground Impedance of Vertically-driven Ground Electrode (수직 접지전극의 접지임피던스 측정에서 도전유도에 의한 오차 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1778-1783
    • /
    • 2009
  • Ground impedance for the large grounding system is measured according to the IEEE Standard 81.2 which is based on the revised fall-of-potential method of installing auxiliary electrode at a right angle. When the auxiliary electrodes are located at an angle of $90^{\circ}$, the ground impedance inevitably includes the error due to earth mutual resistance. In this paper, in order to accurately measure the ground impedance of vertically-driven ground electrodes, error rates due to earth mutual resistance are evaluated by ground resistance and ground impedance measuring devices and compared with calculated values. As a result, the measured results are in good agreement with the computed results considering soil layer with different resistivity. The error rates due to earth mutual resistance decrease with increasing the length of ground electrode in the case that the ratio of the distance between the ground rod to be measured and the auxiliary electrodes to the length of ground electrode(D/L) is same. The ground impedance should be measured at the minimum distance between the auxiliary electrodes that will have an estimated measurement accuracy due to earth mutual resistance.

A discretization method of the three-dimensional poisson's equation with excellent convergence characteristics (우수한 수렴특성을 갖는 3차원 포아송 방정식의 이산화 방법)

  • 김태한;이은구;김철성
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.8
    • /
    • pp.15-25
    • /
    • 1997
  • The integration method of carier concentrations to redcue the discretization error of th box integratio method used in the discretization of the three-dimensional poisson's equation is presented. The carrier concentration is approximated in the closed form as an exponential function of the linearly varying potential in the element. The presented method is implemented in the three-dimensional poisson's equation solver running under the windows 95. The accuracy and the convergence chaacteristics of the three-dimensional poisson's equation solver are compared with those of DAVINCI for the PN junction diode and the n-MOSFET under the thermal equilibrium and the DC reverse bias. The potential distributions of the simulatied devices from the three-dimensional poisson's equation solver, compared with those of DAVINCI, has a relative error within 2.8%. The average number of iterations needed to obtain the solution of the PN junction diode and the n-MOSFET using the presented method are 11.47 and 11.16 while the those of DAVINCI are 21.73 and 23.0 respectively.

  • PDF

Performance of multilevel polarization shift keying system (다중레벨 편광편이키잉 시스템의 성능)

  • 강석근;노윤환;주언경
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.7
    • /
    • pp.1-8
    • /
    • 1997
  • In this paper, Stokes parameters which represent the states of polarization of transmitted light are determined by potential function, which is used to obtain signals points in a multidimensional Euclidean structure. And performance of multilevel polarization shift keying(POLSK) system using the obtained parameters is also represented and analyzed. As results, bit error rate of multilevel POLSK system using the potential function is shown to be lower than the conventional one using the distance matrix. And as number of levels increases, the number of photons per bit for bit error rate of 10$^{-9}$ is also increased linearly. The multilevel POLSK system, therefore, is an energy efficient modulation technque as compared with the convnetional ones.

  • PDF