• Title/Summary/Keyword: potato plants

Search Result 404, Processing Time 0.033 seconds

AFLP analysis to assess genomic stability in Solanum regenerants derived from wild and cultivated species

  • Aversano, Riccardo;Di Dato, Francesco;Di Matteo, Antonio;Frusciante, Luigi;Carputo, Domenico
    • Plant Biotechnology Reports
    • /
    • v.5 no.3
    • /
    • pp.265-271
    • /
    • 2011
  • The cultivated potato as well as its tuber-bearing relatives are considered model plants for cell and tissue culture, and therefore for exploiting the genetic variation induced by in vitro culture. The association between molecular stability and tissue culture in different genetic backgrounds and ploidy levels has already been explored. However, it still remains to be ascertained whether somaclonal variation differs between callus-derived chromosome-doubled and undoubled regenerants. Our research aimed at investigating, through amplified fragment length polymorphism (AFLP) markers, the genetic changes in marker-banding patterns of diploid and tetraploid regenerants obtained from one clone each of Solanum bulbocastanum Dunal and S. cardiophyllum Lindl (both 2n = 2x = 24) and tetraploids from cultivated S. tuberosum L. (2n = 4x = 48). Pairwise comparisons between the banding patterns of regenerants and parents allowed detecting considerable changes associated to in vitro culture both at diploid and tetraploid level. The percentages of polymorphic bands between diploid and tetraploid regenerants were, respectively, 57 and 69% in S. bulbocastanum and 58 and 63% in S. cardiophyllum. On average, the frequencies of lost parental fragments in regenerants were significantly higher than novel bands both in S. bulbocastanum (48 vs. 22%) and S. tuberosum (36 vs. 18%) regenerants. By contrast, in S. cardiophyllum, a similar incidence of the two events was detected (32 vs. 29%). Our results revealed that structural changes after tissue culture process strongly affected the genome of the species studied, but diploid and tetraploids regenerated plants responded equally.

A Simple Detection of Sweetpotato Feathery Mottle Virus by Reverse Transcription Polymerase Chain Reaction

  • Jeong Jae-Hun;Chakrabarty Debasis;Kim Young-Seon;Eun Jong-Seon;Choi Yong-Eui;Paek Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.83-86
    • /
    • 2003
  • A reverse transcription polymerase chain reaction (RT-PCR) protocol was developed using two specific 22-mer primers located in coat protein gene of SPFMV. A 411 bp PCR-product was detected in virus infected plants as well as tissue culture raised sweet potato but not in healthy plants. For optimization of RT-PCR protocol, the optimum crude nucleic acid concentration, annealing temperature, primer concentration and numbers of PCR-cycle for maximum sensitivity and specificity were determined. The optimum condition for RT-PCR was as follows: RT-PCR reaction mixture was one-step mixture, containing 50 pmol of primer, 30 units of reverse transcriptase, 5 units of RNasin, and the crude nucleic acid extracts (200 ng). In RT-PCR, cDNA was synthesized at $42^{\circ}C$ for 45 min before a quick incubation on ice after pre-denaturation at $95^{\circ}C$ for 5 min. The PCR reaction was carried out for 40 cycles at $96^{\circ}C$ for 30 see, $63^{\circ}C$ for 30 sec, $72^{\circ}C$ for 1 min, and finally at $72^{\circ}C$ for 10 min. The viral origin of the amplified product was confirmed by sequencing, with the sequence obtained having $95-98\%$ homology with published sequence data for SPFMV. The benefits of this RT-PCR based detection of SPFMV would be simple, rapid and specific.

Transformation of Potato using the Phosphinothricin Acetyltransferase Gene as the Selectable Marker Gene (감자의 형질전환을 위한 표지유전자로서 Phosphinothricin Acetyltransferase 유전자의 이용)

  • Jeong, J.H.;Yang, D.C.;Bang, K.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.18 no.3
    • /
    • pp.205-213
    • /
    • 1998
  • This experiment was carried out to produce herbicide resistant potatoes hawing only chimeric phosphinothricin acetyltransferase (PAT) genes without using antibiotic selectable marker. The pDY502 vector having only PAT gene was reconstructed for transformation of potato. The reconstructed vector was introduced to Agrobacterium tumefaciens MP90 disarmed, and they were used for potato transformation. Hormonal requirement for plant regeneration from leaves and stem explants of potato was investigated. From this experiment, MS medium treated with IBA 0.1 mg/L + BA 0.5 mg/L was the best for potato regeneration, and the ratio of shoot regeneration was 54% for leaf and 46% for stem in that condition. For transformation, explants of potato leaves and stems were cocultured with A. tumefaciens MP90 containing reconstructed vector harvoring only PAT gene. When the potato explants were placed on various concentrations of bialaphos and all the potato explants were dead on medium with over 5.0mg/L bialaphos. By this selection methods, the explants cocultured with Agrobacterium produced the putative transgenic shoots on medium with 5mg/L bialaphos treatment after 3-4 weeks. Second selection was performed by transferring the shoot tips of putative transgenic to medium containing 20mg/L of bialaphos. The shoot tips grew well on the second selection medium, indicating the production of successful transgenic plants. But normal shoots were dead in same cytotoxic medium. Incorporation of the PAT gene into transgenic potatos were confirmed by PCR analysis of DNA and Southern hybridization. These results show that the PAT gene can serve as a selectable marker and herbicide resistant genes for transformation of potato.

  • PDF

Plants as platforms for the production of vaccine antigens (항원 생산 기반으로서의 식물 연구)

  • Youm, Jung-Won;Jeon, Jae-Heung;Joung, Hyouk;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.250-261
    • /
    • 2010
  • The expression of vaccine antigens in transgenic plants has the potential to provide a convenient, stable, safe approach for oral vaccination alternative to traditional parenteral vaccines. Over the past two decades, many different vaccine antigens expressed via the plant nuclear genome have elicited appropriate immunoglobulin responses and have conferred protection upon oral delivery. Up to date, efforts to produce antigen proteins in plants have focused on potato, tobacco, tomato, banana, and seed (maize, rice, soybean, etc). The choice of promoters affects transgene transcription, resulting in changes not only in concentration, but also in the stage tissue and cell specificity of its expression. Inclusion of mucosal adjuvants during immunization with the vaccine antigen has been an important step towards the success of plant-derived vaccines. In animal and Phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Future areas of research should further characterize the induction of the mucosal immune response and appropriate dosage for delivery system of animal and human vaccines. This article reviews the current status of development in the area of the use of plant for the development of oral vaccines.

A Possible Role of Trehalose as a Regulatory Molecule in Plant Drought Resistance

  • Hwang, Eul-Won;Cho, Soo-Muk;Kwon, Hawk-Bin
    • Korean Journal of Environmental Agriculture
    • /
    • v.23 no.3
    • /
    • pp.123-127
    • /
    • 2004
  • In many organisms, trehalose has been Down as an energy source and a protectant against various environmental stresses such as desiccation, freezing, heat and osmotic pressure. Previously, we have isolated and characterized the genes encoding trehalose-6-phosphate synthase (ZrTPS1) and trehalose-6-phosphate phosphatase (ZrTPS2) from one of the most osmotolerant yeasts, Zygosaccharomyces rouxii. We have also generated transgenic plants by co-introduction of ZrTPS2 and ZrTPS2 into potato plant (ZrTPS2-2A-ZrTPS1 plant) in an attempt to metabolically engineer trehalose in the transgenic plant using the foot-and-mouth disease virus(FMDV) 2A system and to generate drought resistant crop plants. In this research, we assayed previously generated the ZrTPS2-2A-ZrTPS1 plant biofunctionally by drought treatment, and measured the amount of trehalose in the ZrTPS2-2A-ZrTPS1 transgenic plants. The ZrTPS2-2A-ZrTPS1 transgenic plant showed strong drought resistance in spite of little or no accumulation of transgenic in he transgenic plant compared with control plant.

Antifungal Activity of Root Colonizing Pseudomonas fluorescens MC07 is Responsible for Its Disease Suppression Ability (근권 정창 세균 Pseudomonas fluorescens MC07의 항진균 활성과 병 억제 능력)

  • 김진우;박병근;황인규;박창석
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.606-611
    • /
    • 1998
  • An antagonistic bacterium, Pseudomonas flurorescens MC07 inhibited the mycelial growth of Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici in on potato dextrose agan (PDA) and other media. The strain MC07 conlonizes various plant roots and possesses antifungal activity. To determine the role of antifungal activity of the bacterium in disease suppression, a mutant Okm3-4 which lost its activity was isolated after screening 2,500 colonies generated by Omegon-Km insertions. The mutant Okm3-4 showed diminished growth inhibition of R. solani, P. ultimum, F. oxysporum, and Ph. capsici in vitro and had reduced suppressive effects on sesame damping.-off compared to the parental strain. In soils, accumulation of the pathogens by continuous cropping, 90% of sesame plants were killed by natural infection of damping-off whereas, only 29% of plants grown from seeds treated with MC07 were killed. On the other hand, 85% of plants died when sesame seeds were treated with the Okm3-4 cells. This indicated that antifungal activity of MC07 in vitro is directly responsible for the suppression of damping-off disease. Emergence rates of sesame seeds in pots containing diseased soil were 33%. However, MC07 treatments on seeds significantly improved emergence rates, which has similar effects of Benomyl treatment. The mutant Okm3-4 exhibited 53% of emergence rate. This indicated that antifungal activity of MC07 also affects the emergence rate of sesame seeds.

  • PDF

An Outbreak of Gray Mold Caused by Botrytis cinerea on Kenaf(Hibiscus cannabinus L.)

  • Kwon, Jin-Hyeuk;Kang, Dong-Wan;Lee, Seong-Tae;Shim, Chang-Ki;Kim, Min-Jeong;Kim, Jinwoo
    • Journal of agriculture & life science
    • /
    • v.50 no.2
    • /
    • pp.25-32
    • /
    • 2016
  • A severe outbreak of gray mold on kenaf (Hibiscus cannabinus L.) was observed on kenaf grown in the research field of Gyeongsangnam-do Agricultural Research and Extension Services, Jinju, Korea in 2014. Gray mold appeared on young plants as gray-brown velvety mold covering stems and leaves. Infections that girdled the stem caused wilting above the infected area and developed a canker. The casual fungus formed grayish brown colonies on potato dextrose agar. The conidia were one celled, mostly ellipsoid or ovoid in shape, colorless or pale brown in color, and 6-18 × 4-10 ㎛ in size. The conidiophores were 15-32 ㎛ in length. These measurements and taxonomic characteristics were most similar to those of Botrytis. DNA sequencing and phylogenetic analysis of the complete internal transcribed spacer rRNA gene region confirmed that the fungal isolates were indeed Borytis cinerea. Koch's postulates were supported by pathogenicity tests conducted on healthy plants. On the basis of mycological characteristics and pathogenicity test on host plants, the fungus was identified as Botrytis cinerea. To the best of our knowledge, this is the first report of a gray mold caused by B. cinerea on kenaf in Korea.

Inhibitive Activity of Cow Urine and Cow Dung against Sclerotinia sclerotiorum of Cucumber

  • Basak, A.B.;Lee, Min-Woong;Lee, Tae-Soo
    • Mycobiology
    • /
    • v.30 no.3
    • /
    • pp.175-179
    • /
    • 2002
  • A study on comparative efficacy and in vitro activity of fresh cow urine and cow dung for controlling Sclerotinia rot caused by Sclerotinia sclerotiorum of cucumber was carried out following mycelial growth inhibition test, treated and untreated sclerotia with these organic matters at different days of incubation. Results showed that cow urine suppressed more effectively the mycelial growth even after 5 days of incubation in comparison to cow dung. The highest inhibition 75.9% of mycelial growth was recorded in cow dung potato dextrose agar(CUPDA) after 3 days of incubation and least 22.7% was in cow dung potato dextrose agar(CUPDA) after same days of incubation. Mycelial growth from sclerotia of S. sclerotiorum was also influenced by PDA medium mixed with cow urine and cow dung. After 6 days of incubation in CUPDA mycelial growth was only 12.9 mm whereas in CDPDA and PDA the corresponding growth at the same time were 65.8 mm and 80.0 mm. Treated sclerotia of the selected fungus with cow urine had a very effective role on suppression of mycelial growth than that of untreated one. No mycelial growth was observed up to 4 days in treated sclerotia with cow urine. After 5 days only 0.9 mm mycelial growth was measured in treated sclerotia, while in case of untreated sclerotia the growth was 42.6 mm. Application of cow urine and cow dung on growing plants inoculated with the pathogen at different concentrations also proved their inhibitive effects.

Identification of a host range determinant from Ralstonia solancearum race 3

  • Yeonhwa Jeong;Lee, Seungdon;Ingyu Hwang
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.71.2-71
    • /
    • 2003
  • Ralstonia solancearum infects many solanaceous plants, however race 3 infects only potato and tomato weakly. To identify genes responsible for race specificity of R. solanacearum, we mobilized genomic library of LSD2029 (race 3) into LSD341 (race 1) and inoculated 1,000 transconjugants into hot pepper. One transconjugant that did not induce wilt symptom in hot pepper was isolated. We found that a cosmid clone, pRSl, conferred avirulence to LSD341. By deletion and mutational analyses of pRSl, we found the 0.9-kb PstI/Hindlll fragment carries avirulence functions. We sequenced the fragment and identified one possible open reading frame, a rsal gene, possibly encoding 110 amino acids. The rsal was preceded with a plant-inducible promoter (PIP) box, indicating that the gene might be regulated by HrpB. Interestingly, the promoter region of the rsal homolog in the strain GM11000 (race 1) did not have the PIP box. Rsal did not show any significant homologies with proteins in the database, indicating th e protein is different from the previously reported avirulence proteins. When we mutated the rsal gene by marker-exchange in LSD2029, the mutant was less virulent in potato.

  • PDF

Characterization of Pathogenesis and Plant Defence-related Genes Against Potato virus X infection empolying Potato X virus expresssin vector

  • Park, Mi-Ri;Kwon, Sun-Jung;Kim, Kook-Hyung
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.74.1-74
    • /
    • 2003
  • Differential display (DD) of mRNA is a technique in which mRNA species expressed by a cell population are reverse transcribed and then amplified by many separate polymerase chain reactions (PCR). Using DD-RT-PCR we obtained many genes that expressed differentially in healthy and PVX-infected Nicotiana benthamima, using total RNAs extracted from healthy and PVX-infected N. benthamiana plants. Three hundred and twenty-five DNA fragments isolated from DD-RT-PCR were cloned and sequenced for further characterization. Several host genes including SKPI-like protein, heat shock transcription factor and Avr9/Cf-9 rapidly elicited protein were selected to obtain full-length open reading frame and to characterize their potential involvement in virus disease development and/or host's defense against virus infection employing PVX-based expression vector. Transcrips from wild-type and clones containing each selected gene were inoculated onto N. benthamiana Levels of virus replication were confirmedby RT-PCR and RNA blot analysis, Expression profiles and potential role(s) of selected genes upon PVX infection will be discussed.

  • PDF