• 제목/요약/키워드: potato plant

검색결과 906건 처리시간 0.028초

감자에서의 조직배양과 형질전환의 이용 및 연구 동향 (Recent advances in the applications of tissue culture and genetic transformation in potato)

  • 조광수;박영은;박태호
    • Journal of Plant Biotechnology
    • /
    • 제37권4호
    • /
    • pp.456-464
    • /
    • 2010
  • Potato is one of the most important crops in the world. Due to vegetative propagation of this crop, techniques of plant tissue culture and genetic transformation are often applied for potato researches and a lot of progress has been made in the breeding programs using these techniques during the last decades. In potato, there have been several trials to introduce GM potato varieties to the world market, but they so far failed due to the changed legislation and unwillingness of large processors to process GM potatoes. These issues are highly associated with the general acceptances of the public and other political decisions. In addition to these, there are still obstacles to overcome to achieve the development of commercial potato variety and several factors to improve horticulturally important traits. In this study, therefore, we reviewed recent advances and research status on tissue culture and genetic transformation in potato and discussed future perspective.

Bacillus vallismortis Strain EXTN-1 Mediated Systemic Resistance against Potato virus Y and X in the Field

  • Park, Kyung-Seok;Paul, Diby;Ryu, Kyung-Ryl;Kim, Eun-Yung;Kim, Yong-Ki
    • The Plant Pathology Journal
    • /
    • 제22권4호
    • /
    • pp.360-363
    • /
    • 2006
  • Efficacy of plant growth promoting rhizobacteria(PGPR) Bacillus vallismortis strain EXTN-1 has been proved in eliciting induced systemic resistance(ISR) in several crops. The present paper described the beneficial effects of EXTN-1 in potato as increase in yield and chlorophyll content, and plant protection against Potato Virus Y and X(PVY & PVX). EXTN-1 induced systemic resistance to the plants resulting in significant disease suppression in the field. Also the plants under treatment with EXTN-1 had higher chlorophyll content. The bacterized plants had significantly higher yields over the untreated control plants. The strain induced activation of defense genes, PR-1a and PDF 1.2 in transgenic tobacco model, which indicated the possible role of both SA, and JA pathways in EXTN-1 mediated plant protection against crop diseases.

RT-PCR 기법을 이용한 효과적인 감자바이러스 Y의 검정 (An Effective Detection of Potato Virus Y Using RT-PCR Technique)

  • 정영희;전재홍;최경화;김현순;이용섭;정혁
    • 한국식물병리학회지
    • /
    • 제13권4호
    • /
    • pp.219-224
    • /
    • 1997
  • 여러 계통의 PVY 외피단백질 유전자간에 상동성이 높은 부위에 위치한 primer 쌍을 이용하여 RT-PCR 방법으로 PVY 검정법을 개발하였는데 여러 line의 대서품종으로부터 764 bp의 PCR 산물이 합성되었고 이 절편을 sequencing한 결가 PVY의 유전자임을 확인하였다. 싹과 괴경 조직에서 RT-PCR에 의한 PVY의 검정의 민감도는 ELISA 방법보다 약 1,000배정도 높았다.

  • PDF

Nutrient Uptake and Productivity as Affected by Nitrogen and Potassium Application Levels in Maize/Sweet Potato Intercropping System

  • Haque, M.Moynul;Hamid, A.;Bhuiyan, N.I.
    • 한국작물학회지
    • /
    • 제46권1호
    • /
    • pp.1-5
    • /
    • 2001
  • Field experiment was conducted during 1993-94 season to determine the pattern of nutrient uptake and productivity of maize/sweet potato intercropping system. Four levels of nitrogen (0, 50, 100 and 150kg N ${ha}_{-1}$) and four levels of potassium (0, 40, 80 and 120kg $K_2$O ${ha}_{-1}$) formed treatment variables. Plants were sampled periodically to determine dry matter and tissue concentrations of N and K in the individual plant components of intercropped maize and sweet potato. Nitrogen and potassium fertilizer did not interact significantly to nutrient uptake by any plant parts of intercropped maize and sweet potato. But application of N fertilizer independently enhanced N uptake in all the plant parts of maize and sweet potato. The uptake of N in leaf, leaf sheath, stem, husk, and cob of maize increased upto 90 days after planting (DAP) but grain continued to accumulate N till its maturity. Sweet potato exhibited a wide variation in N uptake pattern. Sweet potato leaf shared the maximum uptake of N at 50 DAP which rapidly increased at 70 DAP and then declined. Declination of N uptake by petiole and stem were observed after 120 DAP whereas N uptake by tuber increased slowly upto 90 DAP and then rapidly till harvest. Rate of applied K had very little effect on the uptake patterns in different components of intercropped maize. Pattern of K uptake by leaf, petiole and stem of sweet potato showed almost similar trend to N uptake. But uptake of K by tuber increased almost linearly with the K application. Pattern of N and K uptake by grain and tuber paralleled the grain yield of maize and sweet potato respectively. Intercropped productivity of maize and sweet potato found to be better by the application of 100kg N and 120 kg $K_2$O ${ha}_{-1}$

  • PDF

Mass Propagation of Plug Seedling using Stem Cutting and Their Tuber Yield in Potato

  • Park, Yang-Mun;Song, Chang-Khil;Kang, Bong-Kyoon;Kim, Dong-Woo;Ko, Dong-Hwan
    • 한국작물학회지
    • /
    • 제44권3호
    • /
    • pp.201-206
    • /
    • 1999
  • For the mass production of plug seedlings in cultivar ‘Dejima’ potato (Solanum tuberosum L.) the optimal apical cutting diameter for rooting and rapid multiplication of stem cuttings in hydroponics were determined. In addition, the best planting date was predicted to increase tuber yield of plug seedlings at fall cropping in Cheju-Do, Korea. Days to initial rooting decreased as the cutting diameter was reduced. Plant height, leaf number, root length and root weight per plant were favorable as the cutting diameter was small. The ideal cutting diameter was 1-2 mm in this experiment. In the hydroponic cultures, the Japanese standard (JS) nutrient solution was the most effective for multiplication of stem cuttings. It was able to propagate more than 20 times a month from a single mother plant. Viability of plants, which were derived from plug seedlings using stem cuttings, was excellent when transplanted to the field. The number of tubers and tuber yield in both of the plug seedlings and seed potato planting plots were high when planted on 25 August. The number and yield were reduced when planted on 15 August, 5 September and 15 September. The degree of decrease of tuber yield in the plug seedling planting plot however, was lower than that of seed potatoes when the planting date was late. In the case of small tubers (under 30 g), the number of tubers and tuber yield were evidently increased in the seed potato tuber planting plot; the yield of large tuber (over 80g) in the plug seedling planting plot was higher than that of the seed potato. The total tuber yield per plant in the plug seedling planting plot was less than that of the seed potato; therefore, in order to increase tuber yield it was necessary to increase field plant density.

  • PDF

Analysis of Genes Activated by Salt and ER Stress in bZIP17 and bZIP28 Gene Transgenic Potato Plants

  • Kim, Kyung Hwa;Choi, Man Soo;Chun, Jae Buhm;Jin, Mi Na;Jeong, Nam Hee;Kim, Dool Yi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2018년도 추계학술대회
    • /
    • pp.179-179
    • /
    • 2018
  • Potato (Solanum tubersosum L.) is susceptible to various environmental stresses such as salt, high temperature, and drought. Especially, potato tuber growth is greatly affected by drought that causes not only yield reduction but also loss of tuber quality. Since unpredictable global weather changes cause more severe and frequent water limiting conditions, improvement of potato drought tolerance can minimize such adverse effects under drought and can impact on sustainable potato production. Genetic engineering can be utilized to improve potato drought tolerance, but such approaches using endogenous potato genes have rarely been applied. We were obtained AtbZIP28 gene transgenic potato plants. It is identified transcript levels at various stress conditions, polyethylene glycol (PEG), NaCl, (ABA). Also, For identification to regulate ER stress response genes in AtbZIP28 gene transgenic potato plant, we screened seven potato genes from RNA-seq analysis under TM treatment. Five and two genes were up- and down-regulated by TM, respectively. Their expression patterns were re-examined at stress agents known to elicit TM, DTT, DMSO and salt stress.

  • PDF

Expression of Chitinase Gene in Solanum tuberosum L.

  • Park, Kyung-Hwa;Yang, Deok-Chun;Jeon, Jae-Heung;Kim, Hyun-Soon;Joung, Young-Hee;Hyouk Joung
    • Journal of Plant Biotechnology
    • /
    • 제1권2호
    • /
    • pp.85-90
    • /
    • 1999
  • In order to protect fungal diseases, leaf disc explants of Solanum tuberosum cultivar, Belchip, was infected with an Agrobacterium MP90 strain containing chimeric gene construct, consisting of antibiotic resistance and chitinase gene driven by the CaMV 35S promoter, for transformation. Regenerated multiple shoots were selected on a medium containing kanamycin and carbenicillin after exposure to Agrobacterium. The presence and integration of the npt II and chitinase gene were confirmed by polymerase chain reaction(PCR). Northern blot analysis indicated that the genes coding for the enzyme could be expressed in potato plants. The chitinase activity of transgenic potato plants was higher than the control potato.

  • PDF

Development of a Reliable Technique to Eliminate Sweet potato leaf curl virus through Meristem Tip Culture Combined with Therapy of Infected Ipomoea Species

  • Cheong, Eun-Ju;Hurtt, Suzanne;Salih, Sarbagh;Li, Ruhui
    • 한국자원식물학회지
    • /
    • 제23권3호
    • /
    • pp.233-241
    • /
    • 2010
  • In vitro elimination of Sweet potato leaf curl virus (SPLCV) from infected sweet potato is difficult due to low number of virus-free plants obtained from meristem tip culture and long growth period required for the virus detection. In this study, efficient production of the SPLCV-free sweet potato by in vitro therapy coupled with a PCR assay for virus detection was investigated. Infected shoots cultured on Murashige and Skoog medium were treated at three different temperatures for 7 weeks followed by meristem tip culture on the medium with or without ribavirin at 50 mg/L. The regenerated plantlets were tested for virus infection by a PCR assay. The results showed that the both heat- and cold-treatments, and addition of the ribavirin did not have significant effect on efficiency of the virus elimination. The meristem size, however, greatly affected the survival rate. Meristems sized over 0.4 mm survived better than smaller ones (0.2-0.3 mm). The PCR assay was approved to be a rapid, sensitive and reliable for the SPLCV detection in regenerated plantlets. Therefore, combination of cultivating meristem tips sized 0.4-0.5 mm on the medium at $22^{\circ}C$ without ribavirin and detection of SPLCV in the regenerated plantlets by the PCR assay was an efficient system for the SPLCV elimination from infected sweet potato.

Cloning of Superoxide Dismutase (SOD) Gene of Lily 'Marcopolo' and Expression in Transgenic Potatoes

  • Park, Ji-Young;Kim, Hyun-Soon;Youm, Jung-Won;Kim, Mi-Sun;Kim, Ki-Sun;Joung, Hyouk;Jeon, Jae-Heung
    • Journal of Applied Biological Chemistry
    • /
    • 제49권1호
    • /
    • pp.1-7
    • /
    • 2006
  • Differential display reverse transcription PCR (DDRT-PCR) analysis was performed on lily 'Marcopolo' bulb scale for isolation of expressed genes during bulblet formation. Cu/Zn lily-superoxide dismutase (LSOD) of 872 bp gene, with ability to scavenge reactive oxygen in stress environment, was isolated. Northern blot analysis showed expression levels of LSOD maximized 12 days after bulblet formation. Ti plasmid vectors were constructed with sense and antisense expressions of LSOD gene and transformed into potato. Southern blot analysis of transgenic potatoes revealed different copies of T-DNA were incorporated into potato genome. In transgenic potatoes, lily SOD gene was overexpressed in sense lines and not in antisense lines. In native polyacrylamide gel electrophoresis analysis, additional engineered LSOD was detected in sense overexpressed transgenic line only. Transgenic potatoes were subjected to oxidative stress, such as herbicide methyl viologen (MV). Transgenic potato lines with sense orientation exhibited increased tolerance to MV, whereas in antisense lines exhibited decreased tolerance. In vitro tuberization of transgenic potato with sense orientation was promoted, but was inhibited in transgenic potato with antisense orientation.

Genetic improvement of potato plants

  • Suharsono, Sony
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.12-12
    • /
    • 2017
  • Genetic improvement in potato can be carried out through several approaches, as sexual crosses, somatic hybridization, mutation and genetic engineering. Although the approach is different, but the goal is the same, to get a superior cultivar. Mutation and genetic engineering are very interesting methods for genetic improvement of potato plants. Mutation by gamma-ray irradiation have been performed to get some new potato cultivars which are more resistant to disease and have higher productivity. We have carried out a mutation of some potato cultivars and obtained some excellent clones to be potentially released as new superior cultivars. By the mutation method, we have released one potato cultivar for the French fries industry, and we registered one cultivar of potato for chips, and two cultivar for vegetable potatoes. Actually we are doing multi-location trial for three clones to be released as new cultivars. Through genetic engineering, several genes have been introduced into the potato plant, and we obtained several clones of transgenic potato plants. Transgenic potato plants containing FBPase gene encoding for fructose bisphosphatase, have a higher rate of photosynthesis and higher tuber productivity than non-transgenic plants. This result suggests that FBPase plays an important role in increasing the rate of photosynthesis and potato tuber productivity. Some transgenic potatoes containing the Hd3a gene are currently being evaluated for their productivity. Over expression of the Hd3a gene is expected to increase tuber productivity and induce flowering in potatoes. Transgenic potato plants containing MmPMA gene encoding for plasma membrane ATPse are more tolerant to low pH than non-transgenic plants, indicating that plasma membrane ATPase plays an important role in the potato plant tolerance to low pH stress. Transgenic potato plants containing c-lysozyme genes, are highly tolerant of bacterial wilt diseases caused by Ralstonia solanacearum and bacterial soft rot disease caused by Pectobacterium carotovorum. Expression of c-lyzozyme gene plays an important role in increasing the resistance of potato plants to bacterial diseases.

  • PDF