• Title/Summary/Keyword: potato plant

Search Result 906, Processing Time 0.031 seconds

A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata

  • Hong, Chi Eun;Jeong, Haeyoung;Jo, Sung Hee;Jeong, Jae Cheol;Kwon, Suk Yoon;An, Donghwan;Park, Jeong Mee
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.488-492
    • /
    • 2016
  • Rhodococcus species have become increasingly important owing to their ability to degrade a wide range of toxic chemicals and produce bioactive compounds. Here, we report isolation of the Rhodococcus sp. KB6, which is a new leaf-inhabiting endophytic bacterium that suppresses black rot disease in sweet potato leaves. We determined the 7.0 Mb draft genome sequence of KB6 and have predicted 19 biosynthetic gene clusters for secondary metabolites, including heterobactins, which are a new class of siderophores. Notably, we showed the first internal colonization of host plants with Rhodococcus sp. KB6 and discuss its potential as a biocontrol agent for sustainable agriculture.

Metabolic engineering of Vit C: Biofortification of potato

  • Upadhyaya, Chandrama P.;Park, Se-Won
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.10a
    • /
    • pp.14-14
    • /
    • 2010
  • Vitamin C (ascorbic acid) is an essential component for collagen biosynthesis and also for the proper functioning of the cardiovascular system in humans. Unlike most of the animals, humans lack the ability to synthesize ascorbic acid on their own due to a mutation in the gene encoding the last enzyme of ascorbate biosynthesis. As a result, vitamin C must be obtained from dietary sources like plants. In this study, we have developed two different kinds of transgenic potato plants (Solanumtuberosum L. cv. Taedong Valley) overexpressing strawberry GalUR and mouse GLoase gene under the control of CaMV 35S promoter with increased ascorbic acid levels. Integration of the these genes in the plant genome was confirmed by PCR and Southern blotting. Ascorbic acid(AsA) levels in transgenic tubers were determined by high-performance liquid chromatography(HPLC). The over-expression of these genes resulted in 2-4 folds increase in AsA intransgenic potato and the levels of AsA were positively correlated with increased geneactivity. The transgenic lines with enhanced vitamin C content showed enhanced tolerance to abiotic stresses induced by methyl viologen(MV), NaCl or mannitol as compared to untransformed control plants. The leaf disc senescence assay showed better tolerance in transgenic lines by retaining higher chlorophyll as compared to the untransformed control plants. Present study demonstrated that the over-expression of these gene enhanced the level of AsA in potato tubers and these transgenics performed better under different abiotic stresses as compared to untransformed control. We have also investigated the mechanism of the abiotic stress tolerance upon enhancing the level of the ascorbate in transgenic potato. The transgenic potato plants overexpressing GalUR gene with enhanced accumulation of ascorbate were investigated to analyze the antioxidants activity of enzymes involved in the ascorbate-glutathione cycle and their tolerance mechanism against different abiotic stresses under invitro conditions. Transformed potato tubers subjected to various abiotic stresses induced by methyl viologen, sodium chloride and zinc chloride showed significant increase in the activities of superoxide dismutase(SOD, EC 1.15.1.1), catalase, enzymes of ascorbate-glutathione cycle enzymes such as ascorbate peroxidase(APX, EC 1.11.1.11), dehydroascorbate reductase(DHAR, EC 1.8.5.1), and glutathione reductase(GR, EC 1.8.1.7) as well as the levels of ascorbate, GSH and proline when compared to the untransformed tubers. The increased enzyme activities correlated with their mRNA transcript accumulation in the stressed transgenic tubers. Pronounced differences in redox status were also observed in stressed transgenic potato tubers that showed more tolerance to abiotic stresses when compared to untransformed tubers. From the present study, it is evident that improved to lerance against abiotic stresses in transgenic tubers is due to the increased activity of enzymes involved in the antioxidant system together with enhanced ascorbate accumulated in transformed tubers when compared to untransformed tubers. At moment we also investigating the role of enhanced reduced glutathione level for the maintenance of the methylglyoxal level as it is evident that methylglyoxal is a potent cytotoxic compound produced under the abiotic stress and the maintenance of the methylglyoxal level is important to survive the plant under stress conditions.

  • PDF

Potato Pests Observed in Seed Potatoes, North Korea during 2001 to 2005 (북한 씨감자 생산에서의 병해충 발생(2001-2005))

  • Hahm Young-Il
    • Research in Plant Disease
    • /
    • v.12 no.1
    • /
    • pp.1-4
    • /
    • 2006
  • During visiting North Korea from 2001 to 2005, I have had a few chances to observe and discuss several North Korean scientists for the seed production program and also, the occurrence of potato pests. Healthy seed production, especially in the early generations, e.g. the production of virus-free starting materials as well as in vitro pre-basic seeds (G0) by hydroponics and basic seeds under netted houses according to her new national seed potato program of Academy of Agricultural Science, Pyongyang, North Korea, has been done well so far. Some major pests occurred, however, in the early generations such as pre-basic seed (G0) in greenhouse, basic seed (G1) in screenhouse, foundation seed-I (G2) and even ware potatoes in the fields are Phytopitthora infestans, Spongospora subterrunea, Ralstonia solanacearum, Pythium spp. and some viruses such as Potato virus X, Potato virus Y, Potato leafroll virus, and also larger potato ladybeetle, greenhouse whitefly and potato tuber moth. Therefore, the success of healthy seed production in North Korea will be thoroughly depended on the pest control and the multiplication of virus-free seed stocks in the isolated areas, especially where no infected potatoes are grown.

The Effects of Drought Stress on Inorganic Compound and Growth of Potato Plant (건조스트레스가 감자 식물체 무기성분 및 생육에 미치는 영향)

  • Bak, Gyeryeong;Lee, Gyejun;Cho, Jihong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.3
    • /
    • pp.241-248
    • /
    • 2017
  • Yield of potato is largely influenced by drought stress. This study was conducted in Gangneung and Cheongju during the spring cropping of potato. Potatoes in the Gangneung area were affected by drought but there was no damage due to drought in Cheongju. During the early-growth stage, the contents of inorganic components like available phosphate and growth characteristics of the potato leaf in Cheongju were significantly higher than those in Gangneung but there was no difference after the flowering stage. It was considered that the potato plants cultivated in Cheongju could vigorously grow than that of Gangneung under drought stress. In addition, the content of calcium (Ca), which is a secondary messenger related to aging, was found to be higher in potato plants grown in Cheongju than in Gangneung and accumulated more quickly in potato plants of Cheongju. Because magnesium (Mg) was also found to be higher in potato plants from Gangneung by a wide margin, this phenomenon was thought be related with drought stress. The amounts of all inorganic components absorbed from soil were higher in Cheongju than in Gangneung, showing a relatively higher plant biomass in Cheongju. Correlations of development indexes related to leaf showed less or no relation in Gangneung. According to yield characteristics of the harvest stage, although yield was greatly reduced under drought stress condition, the rate of commercial yield was not significantly affected under the drought stress condition. Consequently, it was considered that these responses to drought stress could be utilized to stabilize potato production under the stressful conditions associated with abnormal climate.

Transformation of Plant Cells by Gene Transfer : Construction of a Chimeric Gene Containing Deleted Maize Alcohol Dehydrogenase Intron and ${\beta}-Glucuronidase$ Gene and Its Expression in Potato (유전자 도입에 의한 식물세포의 형질전환 : 옥수수 알코올 탈수소효소 유전자의 절단된 인트론 및 ${\beta}-Glucuronidase$ 유전자를 함유하는 키메라 유전자의 제조와 감자에서의 발현)

  • 이광웅
    • Journal of Plant Biology
    • /
    • v.35 no.3
    • /
    • pp.237-245
    • /
    • 1992
  • To understand the properties of the cauliflower mosaic virus (CaMV) 35S promoter and the effect of the deleted maize alcohol dehydrogenase I-S (Adhl-S) intron 1 on the expression of the CaMV $35S{\beta}-glucuronidase$ (GUS) gene in potato (Solanum tuberosum L. cv. Superior), we constructed a chimeric gene and transferred it into potato with Agrobacterium tumefaciens mediated method. The pLS201, a gene transfer vector of 17.7 kilobase pairs, was composed of the CaMV 35S promoter, the 249 base pairs of deleted maize Adhl-S intron 1, the GUS reporter gene, and the kanamycin resistance gene as a selectable marker for transformation. The GUS activity was examined by histochemical and spectrophotometric assay in transformed potato plants. The GUS activity was found primarily around the vascular tissue cells in stem and root. In the spectorophotometric assay, the level of GUS activity of transgenic potato transformed with CaMV 35S/249 bp of intron 1 fragment-GUS (pLS201) was compared with that of potato transformed with CaMV 35S-GUS (pBI121). The quantitative spectrophotometric assay showed that the level of GUS activity in potato transformed with pLS201 was higher in leaf, stem and root by 30-, 34- and 42-fold, respectively than those in potato transformed with pBI121. This results indicate that the inclusion of the deleted maize Adhl-S intron 1 resulted in increament of the GUS gene expression in transgenic potato.potato.

  • PDF

Inhibition of Experimental Gastric Ulcer by Potato Tubers and the Starch

  • Lee, Jun-Gi;Jin, Jeong-Ho;Lim, Hak-Tae;Choi, Hee-Don;Kim, Hyun-Pyo
    • Natural Product Sciences
    • /
    • v.15 no.3
    • /
    • pp.134-138
    • /
    • 2009
  • In an attempt to establish anti-ulcerogenic activity of potato tubers, inhibitory activity against ethanol- and indomethacin-induced gastric ulcer models in rats was evaluated for the first time. From several varieties of potato tubers including Solanum tuberosum L. cv. Superior (white skin and fresh potato) and two new varieties of (Bora valley and Gogu valley), raw potato juice was prepared and the starch was obtained from each juice by filtration and drying. Upon oral administration to rats, raw potato juice showed more or less inhibitory activity. The starch showed higher and dose-dependent inhibitory activity, suggesting that the active ingredient in raw potato juice may be the starch. Particularly, the starch obtained from the tubers of new potato variety, "Bora valley," with purple color, showed the highest inhibitory activity (62.4% and 37.1% inhibition of ulcer index at 500 mg/kg), while omeprazole (proton pump inhibitor) used as a reference drug showed 74.4% and 75.7% inhibition at 20 mg/kg against ethanol- and indomethacin-induced ulcer formation, respectively. The present study provides a first evidence of anti-ulcerogenicity of raw potato juice and the starch. Especially, the starch from "Bora valley" strongly inhibited ulcer formation in rats. Considering that these are food components, they may be safely used for anti-ulcerogenic nutraceuticals.

Cultural and Rainfall Factors Involved in Disease Development of Fusarium Wilt of Sweet Potato

  • Lee, Yong-Hwan;Cha, Kwang-Hong;Lee, Doo-Goo;Shim, Hyeong-Kwon;Ko, Sug-Ju;Park, In-Jin;Yang, Kwang-Yeol
    • The Plant Pathology Journal
    • /
    • v.20 no.2
    • /
    • pp.92-96
    • /
    • 2004
  • Environmental factors such as soil moisture, land management, and weather conditions affecting Fusarium wilt of sweet potato were investigated in major sweet potato cultivation regions in Korea. Fusarium wilt occurred mainly in reclaimed terracing lands, which are flattened and located in hilly to mountainous areas at the base of the mountain, in early seasonal cultivation regions. Disease severity was lower in reclaimed fields with natural slope. The development of Fusarium wilt in the fields was highly correlated with precipitation during planting period (r=-0.96**). Fusarium wilt was more severe in fields with less than 20 cm of available soil depth than in fields with over 20 cm of available soil depth. Greenhouse studies were consistent with field studies that less soil moisture content caused severe Fusarium wilt of sweet potato. These results indicate that low rainfall and moisture of soil with low effective soil depth during planting period are important environmental factors influencing the development of Fusarium wilt.

Colorado Potato Beetle (Leptinotarsa decemlineata Say) Control Potential of Essential Oil Isolated from Iranian Cymbopogon citratus Stapf

  • Ebadollahi, Asgar;Geranmayeh, Jafar;Kamrani, Morteza
    • Natural Product Sciences
    • /
    • v.23 no.4
    • /
    • pp.235-238
    • /
    • 2017
  • Colorado potato beetle is a most destructive insect pest of potato throughout the world. Although utilization of chemical insecticides is a main method for management of this pest, their negative side-effects such as threat to humans and the environmental pollution prompted researchers to search for natural alternatives. Recently plant essential oils with low or without side-effects against noun-targeted organisms and with high availability were considered as safe bio-pesticides. In the present study, toxicity of essential oil of Iranian lemongrass, Cymbopogon citratus Stapf, was evaluated against 3th instar larvae and adults of Colorado potato beetle by a leaf dipping method. Results displayed essential oil had notable toxicity against both larvae and adults after 24 and 48 h exposure times. Probit analysis revealed $LC_{50}$ values (lethal concentration to kill 50% of population) with 95% confidence limits were 10.32 (9.17 - 11.72) and 7.76 (6.80 - 8.74) ${\mu}l/ml$ for larvae and 6.27 (4.82 - 8.15) and 4.35 (3.24 - 5.62) ${\mu}l/ml$ for adults after 24 and 48 h, respectively. Based on regression analysis, a positive correlation between log concentration of essential oil and insect mortality was achieved. Results indicated C. citratus essential oil can be candidate as a natural alternative to the harmful chemical insecticides in the management of Colorado potato beetle.

Identification of disease resistance to soft rot in transgenic potato plants that overexpress the soybean calmodulin-4 gene (GmCaM-4) (대두 칼모듈린 단백질, GmCaM-4를 발현하는 형질전환 감자의 무름병 저항성 확인)

  • Park, Hyeong Cheol;Chun, Hyun Jin;Kim, Min Chul;Lee, Sin Woo;Chung, Woo Sik
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.157-163
    • /
    • 2020
  • Calmodulin (CaM) mediates cellular Ca2+ signals in the defense responses of plants. We previously reported that GmCaM-4 and 5 are involved in salicylic acid-independent activation of disease resistance responses in soybean (Glycine max). Here, we generated a GmCaM-4 cDNA construct under the control of the cauliflower mosaic virus (CaMV) 35S promoter and transformed this construct into potato (Solanum tuberosum L.). The constitutive over-expression of GmCaM-4 in potato induced high-level expression of pathogenesis-related (PR) genes, such as PR-2, PR-3, PR-5, phenylalanine ammonia-lyase (PAL), and proteinase inhibitorII (pinII). In addition, the transgenic potato plants exhibited enhanced resistance against a bacterial pathogen, Erwinia carotovora ssp. Carotovora (ECC), that causes soft rot disease and showed spontaneous lesion phenotypes on their leaves. These results strongly suggest that a CaM protein in soybean, GmCaM-4, plays an important role in the response of potato plants to pathogen defense signaling.

Characteristics of Potato virus Y Isolated from Paprika in Korea

  • Choi, Hong-Soo;Ko, Sug-Ju;Kim, Mi-Kyeong;Park, Jin-Woo;Lee, Su-Heon;Kim, Kook-Hyung;Were, Hassan Karakacha;Chois, Jang-Kyung;Takanami, Yoichi
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 2005
  • A virus isolate collected from infected paprika (Capsicum annuum var. grossum) was characterized as Potato virus Y (PVY) based on biological, serological, cytopathological, and molecular properties. In host range studies, the paprika isolate produced the mosaic symptom on some tobacco, tomato and pepper (Capsicum annuum). A new paprika isolate also infected potato cultivars which is different biological characteristic compared to the other popular potyvirus infecting paprika, Pepper mottle virus (PepMoV). Previously reported PVY strains, $PVY^o$ and $PVY^N$ did not infect pepper and typical PepMoV isolates did not infect potato. Distinctive inclusion patterns of the scroll, pinwheel, long laminated inclusions, and helper components in the cytoplasm of infected cells were also different to those observed by the typical PVY isolate infections. However, the paprika isolate reacted to the monoclonal antibody of $PVY^N$ strain with high absorbance readings. RT-PCR amplification, cloning, and sequencing of the 3' untranslated region and a part of coat protein gene also added additional evidence of the paprika isolate as the $PVY^N$-related isolate. Multiple alignments as well as cluster dendrograms of PVY-paprika isolate revealed close phylogenetic relationship to the $PVY^N$ subgroup. Altogether, these results suggest that a new PVY isolate infecting paprika contained distinct characteristics compared to the other previously described PVY strains with closer relationship to the $PVY^N$ strain.