• Title/Summary/Keyword: potassium use efficiency

Search Result 41, Processing Time 0.021 seconds

Photosynthetic Rates of 'Campbell Early' Organic Grape as Affected by Degree of Leaf Spot Disease Caused by Pseudocercospora vitis (포도갈색무늬병 발병수준이 '켐벨얼리' 유기포도의 광합성률에 미치는 영향)

  • Ryu, Young-Hyun;Bae, Su-Gon;Yeon, Il-Kwon;Kim, Kwang-Sup;Park, Sang-Jo;Park, Jun-Hong;Park, Jong-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.773-786
    • /
    • 2016
  • Grape cultivar "Campbell Early" account for 70% of table grape in Korea and Leaf Spot Disease caused by Pseudocercospora vitis is one of a major disease in greenhouse and field grown area during late summer season in both of organic and conventional grape farm. Leaf spot disease can cause lowing of sugar content in fruit and vine growth and very difficult to control especially in organic field. Photosynthesis ability and chemical components are compared between leaf spot disease infected leaves with degree of necrotic area. With increase of disease necrotic area, $CO_2$ differential value, water use efficiency and $CO_2$ assimilation and respiration ratio are decreased proportionally and on the other hand, stomatal conductance value is not affected by disease necrotic area. Chlorophyll contents are also decreased by 50% in heavily infected leaves and imply decrease of chlorophyll contents is a major source of photosynthesis ability decline. With increase of disease necrotic area in leaves, total nitrogen and phosphate contents are decreased and on the other side, total carbon, potassium, calcium and magnesium contents are increased. From this research, we can infer that not only chemical control program is important in control of leaf spot disease but also fertilizing program is significant especially in organic agronomical control of fungal disease in grape cultivar "Campbell Early".

A Study of the Korean Historical Development of Explosives Technology(Korean Traditional Explosive Technology) (화약기술발전의 사적고찰에 관한 연구 (한국의 고대 화약기술))

  • 나윤호;손선관
    • Journal of the Korean Professional Engineers Association
    • /
    • v.12 no.1
    • /
    • pp.12-20
    • /
    • 1979
  • The early history of gun powder (black powder) and explosives was closely connected with the discovery of methods of preparing and purifing salpetre (potassium nitrate KNO$_3$). The Chineses apparently became acquainted with salpetre firstly on about 11th century, and they were possibly the original discoverers of salpetre for raw material of gun powder. The Egyptians called it “Chinese snow”, and it is significant that Chingis-Khan, the Mongol conqueror, took the Chinese eenginees with him in 1218 to use it for attacking the fortifications of the Persian cities. The black powder was invented by chance by Chinese alchemists during the Song dynasty (11th century) in the process of manufacturing medicine, and the powder was introduced to Europe by Mongol army. The manufacturing method of salpetre and gun powder was introduced to Korea from China in 1374, and the powder alld gunnery manufacturing project was developed by Mu Sun Choe(崔茂宣), the first Korean engineer late in Koryo dynasty. Coming in to Yi dynasty the explosive technic, extractive method of salpetre, and gunnery manufacturing process were developed greatly by Mu Sun Choe and Hai Sin Choe (崔海臣). However, confronting with the Japanes invasion at Imjin War (1597) with more powerful western style rifles which had been introduced from the Portuguese, on the contrary Korean army with the traditional guns couldn't compete with them. The Chochong(烏銃, the western rifle introduced in Japane) were much superior to the Chinese style traditional guns in the shooting power and striking efficiency. On the other hand, the Japanese battle ships armed only with the Chochong, when confronted with the Korean turtle shaped ships under the commanding of Admiral Yi Sun-Sin(李舞臣), were defeated by the Korean canons on the ships. The technical development of the modern powder industry in Korea. with the construction of four big explosive plants from 1930 to 1945, has resulted the mass-production of explosives. This study was purposed to investigate to the process with regard to the details of introduction to the explosive technology in Korea, and intended to give a help to the engineers who are engaged in study of the explosive technics by means of giving a spot light data on the early process of the designs, and making suggestion to the researchers for further study and invent a new and modern explosive.

  • PDF

The Amount of Macro and Micro Elements Absorbed During Soil Cultivation of Cut-flower Roses (Rosa hybrida L.) (절화장미 토양재배시 미량 및 다량 원소의 양분 흡수량)

  • Lee, In-Bog;Lim, Jae-Hyun;Choi, Yong-Mun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.5
    • /
    • pp.358-364
    • /
    • 2001
  • To obtain information for the proper fertilization management of cut-flower roses, the amount of macro and micro elements absorbed by cut-flower roses from soil for a year was investigated. Three cut-flower rose cultivars which are called 'Grandgara', 'Nobless', and 'Centina' were transplanted to a sandy loam soil, N-P-K standard fertilization was applied to the soil, and drip irrigation was done at the level of 10 kPa soil moisture tension. There was not significantly different in the harvest amount of cut-flower rose between 'Grandgara' and 'Nobless', but the harvest yield of 'Centina' was about 63% level when compared to that of 'Grandgara'. Considering seasonal changes in the content of nutrients in plant, parts, the uptake of untrients was higher in winter season than that in spring and summer seasons. Except for 'Centina', the nutrient amount removed from plant parts of 'Grandgara' and 'Nobless' increased with the sequence of floral part < stem < leaf, indicating that it is more dependent on biomass yield than on the content of nutrients in each plant part. The ratio of N/K amount absorbed by 'Nobless' and 'Centina' was 1.13 and 1.28. respectively, lower than 1.68 of 'Grandgara', showing that the requirement for K is greater in 'Nobless' and 'Centina' than in 'Grandgara'. The use efficiency of nutrients by cut-flower roses ranged from 39 to 64% in nitrogen, 5 to 9% in phosphorus, and 37 to 67% in potassium. It suggests that the requirement for P in cut-flower roses is very low.

  • PDF

Method of Environmental-Friendly Fertilization for Rice Cultivation after Vegetable Copping in Green House Soil (시설재배 후작 벼 재배를 위한 친환경적 시비 기술)

  • Jeon, Weon-Tai;Lee, Jae-Sang;Park, Ki-Do;Park, Chang-Yeong;Roh, Sug-Won;Yang, Won-Ha
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.191-197
    • /
    • 2005
  • Green house soils have been intensively cultivated with excessive application of compost and chemical fertilizer for vegetable growth. The objective of this study was to establish the reasonable fertilizer application system for rice cultivation in green house soil. Field experiment was carried out with rice cv. Geumo-byeo 1 in Jisan series soil (fine loamy, mixed, mesic family of Fluventic Haplaquepts) that was previously cropped with green pepper (Capsicum annuum L.) for the last 3 years. Treatment consisted of conventional fertilization $(N-P_2O_5-K_2O=11-4.5-5.7kg\;10a^{-1})$, no basal fertilization, 50% reduction of basal fertilization no top dressing, bulk blending fertilizer, and no fertilizer. The value of pH, available phosphate, and exchangeable potassium after experiment was lower than those before experiment while organic matter content was not difference in all treatment. The value of salt elusion was the highest in no basal fertilization plot. The amount of $NH_4-N$ in soil was higher in growth stage of rice as fertilizer amount increased in 1998. The changes of plant height and tiller were higher as fertilizer amount increased. Thousand-grain weight as yield component was higher in no basal fertilization plot all the year because of decreasing panicle. There was no significant difference in rice yield between treatments in 1998. However, conventional fertilization resulted in significantly increased rice yield in 1999. Nitrogen use efficiency was the highest in no basal fertilization plot in 1998 and in conventional fertilization plot in 1998. Our results suggest that no basal fertilization be best to increase salt elusion with slightly increased yield in first year for rice cropping after vegetable harvesting, which method improves fertilization efficiency. However, conventional fertilization was good for second rice cropping after vegetable harvesting in greenhouse.

A Study on the Mitigation of Nitrous Oxide emission with the Horticultural Fertilizer of Containing Urease Inhibitor in Hot Pepper and Chinese Cabbage Field (고추와 배추 재배지에서 요소분해효소 억제제 함유 원예용 비료 시용에 따른 아산화질소 배출 저감 효과)

  • Ju, Ok Jung;Lim, Gap June;Lee, Sang Duk;Won, Tae Jin;Park, Jung Soo;Kang, Chang Sung;Hong, Soon Sung;Kang, Nam Goo
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.235-242
    • /
    • 2018
  • BACKGROUND: About 81% of nitrous oxide ($N_2O$) emissions from agricultural land to the atmosphere is due to nitrogen (N) fertilizer application. Mitigation of $N_2O$ emissions can be more effective in controlling biochemical processes such as nitrification and denitrification in the soil rather than decreasing fertilizer application. The use of urease inhibitors is an effective way to improve N fertilizer efficiency and reduce $N_2O$ emissions. Several compounds act as urease inhibitors, but N-(n-butyl) thiophosphoric triamide (NBPT) has been used worldwide. METHODS AND RESULTS: Hot pepper and chinese cabbage were cultivated in five treatments: standard fertilizer of nitrogen-phosphorus-potassium(N-P-K, $N-P_2O_5-K_2O$: 22.5-11.2-14.9 kg/ha for hot pepper and $N-P_2O_5-K_2O$: 32.0-7.8-19.8 kg/ha for chinese cabbage), no fertilizer, and NBPT-treated fertilizer of 0.5, 1.0, and 2.0 times of nitrogen basal application rate of the standard fertilizer, respectively in Gyeonggi-do Hwaseong-si for 2 years(2015-2016). According to application of NBPT-treated fertilizer in hot pepper and chinese cabbage, $N_2O$ emission decreased by 19-20% compared to that of the standard fertilizer plot. CONCLUSION: NBPT-treated fertilizer proved that $N_2O$ emissions decreased statistically significant in the same growth conditions as the standard fertilization in the hot pepper and chinese cabbage cultivated fields. It means that NBPT-treated fertilizer can be applied for N fertilizer efficiency and $N_2O$ emissions reduction.

Application Effect of the Controlled Release Fertilizer Applied on Seedling Tray at Seeding Time in Rice (벼 모판 파종동시처리 완효성비료 시용효과)

  • Won, Tae-Jin;Choi, Byoung-Rourl;Cho, Kwang-Rae;Lim, Gab-June;Chi, Jeong-Hyun;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.204-212
    • /
    • 2019
  • The optimal application rate of a controlled release fertilizer (CRF) on the growth, yield, and seeding time of rice grown on seedling trays was investigated. The experimental field was located at $37^{\circ}22^{\prime}10^{{\prime}{\prime}}N$ latitude and $127^{\circ}03^{\prime}85^{{\prime}{\prime}}E$ longitude in Hwaseong, Gyeonggi-do, Republic of Korea. The soil in the paddy field was a clay loam. The CRF used in the experiment contained $300g\;kg^{-1}$ of nitrogen, $60g\;kg^{-1}$ of phosphate, and $60g\;kg^{-1}$ of potassium, respectively. The CRF was applied at the rate of 0, 200, 300, 400, 500, and 600 grams on rice seedling tray compared with the field application based on soil testing (control), respectively. The CRF can be applied as single application(which can replace basal fertilizer application and two top dressing application) directly to the seedling tray, and showed the minimum release at the seedling period. Considering the plant growth, nitrogen use efficency and yield of rice, the optimal application rate of developed CRF was 500 g per seedling tray and the yield of rice at this application rate was $4.92{\sim}5.04Mg\;ha^{-1}$. The regression formula between the rice yield and application rates of CRF was as follows ; "$Y=0.0002{\chi}^2+0.0963{\chi}+411.6$($R^2$ : 0.9922) in 2010 and $Y=8E-6{\chi}^2+0.2723{\chi}+344.04$($R^2$:0.9864) in 2011, Y : Rice yield ($Mg\;ha^{-1}$), ${\chi}$ : Application rate (grams) of controlled release fertilizer". The optimum application rates of CRF per rice seedling tray by regression formula was 498 grams in 2010 and 513 grams in 2011.

Seasonal Mineral Nutrient Absorption Characteristics and Development of Optimum Nutrient Solution for Rose Substrate Culture in a Closed Hydroponic System (순환식 수경재배에서 재배시기별 장미의 무기이온 흡수특성과 적정 배양액 조성)

  • Yang, Eun-Young;Park, Keum-Soon;Oh, Jeong-Sim;Lee, Hye-Jin;Lee, Yong-Beom;Lee, Ju-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.354-362
    • /
    • 2009
  • This study was performed to develop a suitable nutrient solution for standard rose substrate culture in a closed hydroponic system. 1/4, 1/2, 2/3 and 1 strength of the nutrient solution made by Japan National Institute of Vegetable and Tea Science (JNIVT) were supplied. The photosynthesis rate, quality and growth of cut flower were higher in the 1/2 and 2/3 strength of nutrient solution during high and low temperature period. Based on the above results, optimum nutrient solutions (UOS) were composed by nutrientwater (n/w) absorption ratio with 1/2S ($NO_{3^-}N$ 6.8, $NH_{4^-}N$ 0.7, $PO_{4^-}P$ 2.0, K 3.8, Ca 3.0, Mg 1.2, $SO_{4^-}S$ $1.2me{\cdot}L^{-1}$) at high temperature season and 2/3($NO_{3^-}N$ 9.7, $NH_{4^-}N$ 0.8, $PO_{4^-}P$ 2.2, K 5.0, Ca 3.9, Mg 1.5, $SO_{4^-}S$ $1.5me{\cdot}L^{-1}$) at low temperature season. The results of suitability examination showed that the EC level in newly composed nutrient solution (UOS) was more stable than other nutrient solutions due to its large amount of calcium and potassium. The growth of cut flower cultivated with UOS was higher than those of other nutrient solutions. Especially, the yield of cut flowers in UOS nutrient solution increased 1.4 times than that of other nutrient solution treatments. Consequently, the new nutrient solution investigated in this experiment was suitable for rose cultivation in a closed hydroponic system.

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.

Effect of Seed Priming and Pellet Coating Materials on Seedling Emergence of Aster koraiensis (프라이밍과 펠렛코팅 소재가 벌개미취 종자의 유묘 출현율에 미치는 영향)

  • Kang, Won Sik;Kim, Min Geun;Kim, Soo Young;Han, Sim Hee;Kim, Du Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.1
    • /
    • pp.41-49
    • /
    • 2020
  • In this study, the effect of seed pre-treatments and pellet coating materials to enhance the efficiency of large-scale propagation of Aster koraiensis seeds were investigated. Seeds were immersed in water for one day, and only those that sank were used for pre-treatment to use filled seeds. Pre-treatments were divided into hormone treatments, with gibberellic acid (GA3; 200 and 500 ppm) and 24-epibrassinolide (10-6, 10-7, and 10-8M), and priming with potassium nitrate (100 mM of KNO3). To produce pellet-coated seeds, pellet materials (DTCS or DTK) were applied to control (unprimed) and primed seeds with binders (PVA or CMC). The maximum germination percent (GP) of seeds before pellet coating was 65% (with the priming treatment), and there was no difference in the GP of seeds among hormone treatments. For seeds sown in a growth chamber on filter paper, GP was 41% for control (unprimed/uncoated) seeds, 65% for uncoated primed seeds, 71% for DTCS/PVA-pellet-coated seeds, and 42% for DTK/CMC-pellet-coated seeds. Seeds that were primed first and then pellet-coated showed greatly improved GP, mean germination time (MGT), and germination rate than seeds that were only pellet-coated. For seeds sown in commercial soil in a greenhouse, control seeds had a GP of 27%, whereas primed seeds had the highest GP (58%), and their MGT and GT were 9.4 days and 7.0%·day, respectively. In addition, DTK/PVA-pellet-coated seeds (40%) also had a GP higher than the control (27%), and their MGT was 15-27 days. For seeds sown in sandy-loam soil in a greenhouse, unprimed-pellet-coated seeds and primed-pellet-coated seeds both had GPs ranged of 39%, which were lower than that of control seeds. In general, the seeds that were pellet-coated with DTK had a higher GP than those pellet-coated with DTCS. Furthermore, the MGT of unprimed-pellet-coated seeds was 15.0-19.8 days, which was longer than the MGT of primed-pellet-coated seeds. These results suggest that priming enhances seedling emergence of Aster koraiensis seeds. Moreover, when priming is combined with pellet coating, DTK is a more suitable pellet material than DTCS, and PVA and CMC are equally suitable adhesives.

Effects of Nitrogen Fertilization on the Yield and Effective Components of Chrysanthemum boreale M. (질소시비가 산국의 수량과 유효성분에 미치는 영향)

  • Lee, Kyung-Dong;Yang, Min-Suk;Lee, Young-Bok;Kim, Pil-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.1
    • /
    • pp.38-46
    • /
    • 2002
  • Chrysanthemum boreale M. (hereafter, C. boreale M.), a perennial flower, has been historically used as a natural medicine in Korea. With increasing concerns for health-improving foods, the demand for C. boreale M. has become higher than ever. Howevr, the amount of wild C. boreale M. collected from mountainous areas is not enough to cover all demands. The cultivation system and fertilization strategy are required to meet increasing demand on C. boreale M. with a good quality. We investigated the effects of nitrogen application on plant growth and effective components of C. boreale M. to suggest optimum rate of nitrogen fertilization. C. boreale M. was cultivated in a pot scale (1/2000a scale), and nitrogen applied with rate of 0(N0), 50(N50), 100(N100), 150(N150), 200(N200), and $250(N250)kg\;ha^{-1}$. Phosphate and potassium were applied at the same level ($P_2O_5-K_2O=80-80kg\;ha^{-1}$) in all treatments. Maximum yield achieved in 246 and $226kg\;ha^{-1}$ N treatment on the whole plant and the flower part, a valuable part as a herbal medicine, respectively. Proline was the most abundant amino acid in the flower of C boreal M. and the contents of amino acids increased with increasing nitrogen application rate in flower. Nitrogen recovery efficiency was high more than 41% in all nitrogen treatments and increased to 61.8% in nitrogen N100 treatment. From the nitrogen content, the high nitrogen uptake, the low residue of mineral N and the reasonably good apparent fertilizer recovery, it can be inferred that C. boreale M. made efficient use of the available nitrogen. In flower, contents of Cumambrin A. which is a sesquiterpene compound and has the effect of blood-pressure reduction, decreased with increasing nitrogen application. However, the amount of Cumambrin A in flower increased as nitrogen rate increased, because of increasing flower yield. Conclusively, nitrogen fertilization could increase yields and enhance quality. The optimum nitrogen application rate might be on the range of $225{\sim}250kg\;ha^{-1}$ in a mountainous soil.