• Title/Summary/Keyword: potassium ions

Search Result 190, Processing Time 0.03 seconds

Experimental Study on the Deformation and Failure Behavior of Tono Granite (토노(Tono) 화강암의 변형 및 파괴거동에 관한 실험적 연구)

  • Choi, Jung-Hae;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.173-183
    • /
    • 2012
  • The nature of surface deformation of Tono granite was investigated using a confocal laser scanning microscope (CLSM) under water-saturated stress relaxation conditions. A new apparatus was developed for this experiment, enabling continuous measurements of stress-strain and simultaneous observations of surface deformation by CLSM. The amounts of grain contact deformation and intra-granular surface deformation were calculated using a finite element method. The results reveal that intense grain contact deformation and intra-granular surface deformation occurred during the period of stress relaxation, and that the intensity of this deformation increased with increasing applied stress. Finite element method (FEM) results show that the strain of grain boundary was greater than strain of inter-granular surface. Contour maps of these local strains were compiled for individual grains and their boundaries, revealing intense deformation at the boundaries between biotite and quartz under compressional stress. This result was a consequence of the mechano-chemical effect of biotite and quartz minerals. Biotite in granite has a layered structure of iron-magnesium-aluminum silicate sheets that are weakly bonded together by layers of potassium ions. In contrast, quartz occurs as stable spherical grains.

The Study on the Ion Water Characteristics of Raw Water in the Domestic Natural Mineral Water (국내 유통 중인 먹는샘물 원수의 이온류 수질 특성에 관한 연구)

  • Lee, Leenae;Ahn, Kyunghee;Min, Byungdae;Yang, Mihee;Choi, Incheol;Chung, Hyenmi;Park, Juhyun
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.5
    • /
    • pp.442-449
    • /
    • 2016
  • The goal of this study is to provide basic data to establish a foundation for the provision of safe drinkable water. The raw water of natural mineral water was analyzed to determine the quantities of anions (F-, Cl-, NO3-N-, and SO42- ) and cations (Ca2+, K+, Mg2+, and Na+) during the former and latter half of 2016. Analysis of the current quality of the raw water of natural mineral water among domestic manufacturers showed average anions contents of 0.46mg/L of fluorine, 8mg/L of chlorine ion, 1.5mg/L of nitrate nitrogen, and 12mg/L of sulfate ion. While the fluorine content was greater than the water quality criterion of 2.0mg/L at four points, the fluorine level was overall stable. The average cations contents included 21.3mg/L of calcium, 1.0mg/L of potassium, 3.4mg/L of magnesium, and 9.6mg/L of sodium. The chemical characteristics were compared among the major ions, and the results are presented in a piper diagram. The content ratio of cations was in the order of Ca2+> Na+>Mg2+>K+, whereas that of anions was in the order of SO42->Cl->NO3-N->F-. While the cations were slightly scattered, the anions were generally concentrated except for at a few points. The Ca-Na-HCO3 type was dominant overall in water sources from diorite, gneiss, and granite, while the Na-Mg-Ca-HCO3-Cl type was dominant in basalt sources. Mineral water manufacturers source their water under various conditions, including in-hole casing, excavation depth, and contact state of bedrock; even within the same rocky area, some differences in the water quality type can occur. When the depth of the water source was taken into account, the mean anions contents of F-, Cl-, NO3-N-, and SO42- were similar, with no significant differences according to depth. Of the cations, K+ and Na+ showed no significant differences across all the tubular wells, whereas Ca2+ and Mg2+ decreased in content with depth.

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Inhibition and Chemical Mechanism of Protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707 (Pseudomonas pseudoalcaligenes KF707에서 유래한 protocatechuate 3,4-dioxygenase 의 저해 및 화학적 메커니즘)

  • Kang, Taekyeong;Kim, Sang Ho;Jung, Mi Ja;Cho, Yong Kweon
    • Journal of Life Science
    • /
    • v.25 no.5
    • /
    • pp.487-495
    • /
    • 2015
  • We carried out pH stability, chemical inhibition, chemical modification, and pH-dependent kinetic parameter assessments to further characterize protocatechuate 3,4-dioxygenase from Pseudomonas pseudoalcaligenes KF707. Protocatechuate 3,4-dioxygenase was stable in the pH range of 4.5~10.5. L-ascorbate and glutathione were competitive inhibitors with $K_{is}$ values of 0.17 mM and 0.86 mM, respectively. DL-dithiothreitol was a noncompetitive inhibitor with a $K_{is}$ value of 1.57 mM and a $K_{ii}$ value of 8.08 mM. Potassium cyanide, p-hydroxybenzoate, and sodium azide showed a noncompetitive inhibition pattern with $K_{is}$ values of 55.7 mM, 0.22 mM, and 15.64 mM, and $K_{ii}$ values of 94.1 mM, 8.08 mM, and 662.64 mM, respectively. $FeCl_{2}$ was the best competitive inhibitor with a $K_{is}$ value of $29{\mu}M$. $FeCl_{3}$, $MnCl_{2}$, $CoCl_{2}$, and $AlCl_{3}$ were also competitive inhibitors with $K_{is}$ values of 1.21 mM, 0.85 mM, 3.98 mM, and 0.21 mM, respectively. Other metal ions showed noncompetitive inhibition patterns. The pH-dependent kinetic parameter data showed that there may be at least two catalytic groups with pK values of 6.2 and 9.4 and two binding groups with pK values of 5.5 and 9.0. Lysine, cysteine, tyrosine, carboxyl, and histidine were modified by their own specific chemical modifiers, indicating that they are involved in substrate binding and catalysis.

Assessment of Soil Contamination and Hydrogeochemistry for Drinking Water Sites in Korea (국내 먹는샘물 개발지역의 토양 오염 평가 및 수리지구화학적 특성)

  • 이두호;전효택
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.1
    • /
    • pp.41-53
    • /
    • 1997
  • Geochemical data of soil and water samples were presented in order to assess the environmental impart for drinking water sites. Microscopic observation of rock samples and physical and chemical analysis of soil and water samples were undertaken. The geology of study areas are classified into three groups such as granitic rocks, meta-sedimentary rocks and sedimentary rocks. Enrichment of heavy metals derived from those rocks is not found in this study areas. Soils were analyzed for Cu, Pb, Zn, Cd and Cr using AAS extracted by HNO$_3$+HClO$_4$ and 0.1 N HCl. Heavy metal concentrations in soils are within the range of those in uncontaminated soils. In comparison of metal contents extracted by 0.1 N HCl and HNO$_3$+HC1O$_4$, less than 10% of the heavy metals are present in the exchangeable fraction. In particular, an pollution index has been proposed to assess the degree of soil contamination. Pollution index in soils are between 0.03 and 0.47 therefore, soils are not polluted with heavy metals. Deep groundwaters within granitic rocks have been evolved into Na$\^$+/-HCO$_3$$\^$-/ type, whereas other deep groundwaters evolved into Ca$\^$2+/-HCO$_3$$\^$-/ type. The predominance of Na$\^$+/ over Ca$\^$2+/ in deep groundwaters within granitic rocks is a result of dissolution of plagioclase, but for sedimentary and meta-sedimentary rocks, dissolution of calcite is a dominant factor for their hydrogeochemistry. The pH, conductivity and contents of the most dissolved ions in the water increase with depth. Shallow groundwaters, however, are highly susceptible to pollution owing to agricultural activities, considering the fact that high contents of nitrate, chloride and potassium, and high K/Na ratio are observed in some shallow groundwaters. In a thermodynamic approach, most natural water samples are plotted within the stability fields of kaolinite and smectite. Therefore, microcline and other feldspars will alter to form clay minerals, such as kaolinite and smectite. From the modelling for water-rock interactions based on mass balance equation, models accord well with behavior of the ions and results of thermodynamic studies are derived.

  • PDF

[ $Ca^{2+}\;and\;K^+$ ] Concentrations Change during Early Embryonic Development in Mouse (생쥐 초기 배 발달 동안 변화되는 칼슘과 포타슘 이온)

  • Kang D.W.;Hur C.G.;Choi C.R.;Park J.Y.;Hong S.G.;Han J.H.
    • Journal of Embryo Transfer
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2006
  • Ions play important roles in various cellular processes including fertilization and differentiation. However, it is little known whether how ions are regulated during early embryonic development in mammalian animals. In this study, we examined changes in $Ca^{2+}\;and\;K^+$ concentrations in embryos and oviduct during mouse early embryonic development using patch clamp technique and confocal laser scanning microscopy. The intracellular calcium concentration in each stage embryos did not markedly change. At 56h afier hCG injection when 8-cell embryos could be Isolated from oviduct, $K^+$ concentration in oviduct increased by 26% compared with that at 14h after injection of hCG During early embryonic development, membrane potential was depolarized (from -38 mV to -16 mV), and $Ca^{2+}$ currents decreased, indicating that some $K^+$ channel might control membrane potential in oocytes. To record the changes in membrane potential induced by influx of $Ca^{2+}$ in mouse oocytes, we applied 5 mM $Ca^{2+}$ to the bath solution. The membrane potential transiently hyperpolarized and then recovered. In order to classify $K^+$ channels that cause hyperpolarization, we first applied TEA and apamin, general $K^+$ channel blockers, to the bath solution. Interestingly, the hyperpolarization of membrane potential still appeared in oocytes pretreated with TEA and apamin. This result suggest that the $K^+$ channel that induces hyperpolarization could belong to another $K^+$ channel such as two-pore domain $K^+(K_{2P})$channel that a.e insensitive to TEA and apamin. From these results, we suggest that the changes in $Ca^{2+}\;and\;K^+$ concentrations play a critical role in cell proliferation, differentiation and reproduction as well as early embryonic development, and $K_{2P}$ channels could be involved in regulation of membrane potential in ovulated oocytes.

The Chemical Composition of the Nagdong River Downstream Water (낙동강 하류수의 수질조성에 대하여)

  • WON Jong Hun;LEE Bae Jung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.14 no.2
    • /
    • pp.47-58
    • /
    • 1981
  • Relationships between the electrical conductivity and the contents of the chloride, sulfate, calcium, magnesium, sodium, potassium and total major inorganic ions, and between each, chemical conservative constituents were calculated with the data which sampled at the lesions of Mulgeum and between Namji and Wondong from March 1974 to April 1980. Semilogarithmic relations were found between the electrical conductivity and the contents of monovalent ions, and logarithmic relations were found between the electrical conductivity and the contents of divalent ions at the both regions. The relational equations between the electrical conductivity $\lambda_{25}$and the contents of the major inorganic ions at Mulgeum are as follows: $log\;Cl(ppm)\;=\;2.37{\cdot}\lambda_{25}(m{\mho}/cm)+0.733{\pm}0.141$, $log\;SO_4(ppm)=1.12{\cdot}log\lambda_{25}(m{\mho}/cm)+2.14{\pm}0.18$, $log\;Ca(ppm)=0.615{\cdot}log\lambda_{25}(m{\mho}/cm)+1.67{\pm}0.12$, $log\;Mg(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.27{\pm}0.11$, $log\;Na(ppm)=2.82{\cdot}\lambda_{25}(m{\mho}/cm)+0.551{\pm}0.133$, $log\;K(ppm)=1.33{\cdot}\lambda_{25}(m{\mho}/cm)+0.136{\pm}0.095$, and total inorganic ions $C(ppm)=399{\cdot}\lambda_{25}(m{\mho}/cm)-0.9{\pm}14.6$. The relational equations between the electrical conductivity ($\lambda_{25}$) and the contents of the major inorganic ions at the region between Namji and Wondong a.e as follows: $log\;Cl(ppm)=4.27{\cdot}\lambda_{25}(m{\mho}/cm)+0.380{\pm}0.138$, $log\;SO_4(ppm)=0.915{\cdot}log\lambda_{25}(m{\mho}/cm)+1.95{\pm}0.18$, $log\;Ca(ppm)=0.756{\cdot}log\lambda_{25}(m{\mho}/cm)+1.74{\pm}0.12$, $log\;Mg(ppm)=1.00{\cdot}log\lambda_{25}(m{\mho}/cm)+1.41{\pm}0.10$. $log\;Na(ppm)=2.47{\cdot}\lambda_{25}(m{\mho}/cm)+0.614{\pm}0.065$, $log\;K(ppm)=1.62{\cdot}\lambda_{25}(m{\mho}/cm)+0.030{\pm}0.060$, and total inorganic ions $C(ppm)=323{\cdot}\lambda_{25}(m{\mho}/cm)+11.7{\pm}9.3$. Logarithmic relations were found between each chemical conservative constituents at Mulgeum and the equations are as follows: $log\;Cl(ppm)=0.711{\cdot}log\;SO_4(ppm)+0.488{\pm}0.206$, $log\;Cl(ppm)=0.337{\cdot}log\;Ca(ppm)+0.822{\pm}0.130$, $log\;Cl(ppm)=0.605{\cdot}log\;Mg(ppm)-0.017{\pm}0.154$, $Cl(ppm)=0.676{\cdot}Na(ppm)+2.31{\pm}4.67$, $log\;Cl(ppm)=0.406{\cdot}log\;K(ppm)-0.092{\pm}0.112$, $log\;SO_4(ppm)=0.378{\cdot}log\;Ca(ppm)+0.721{\pm}0.125$, $log\;SO_4(ppm)=0.462{\cdot}log\;Mg(ppm)+0.107{\pm}0.118$, $log\;SO_4(ppm)=0.592{\cdot}log\;Na(ppm)+0.313{\pm}0.191$, $log\;SO_4(ppm)=0.308{\cdot}log\;K(ppm)-0.019{\pm}0.120$, $Ca(ppm)=0.262{\cdot}Mg(ppm)+0.74{\pm}1.71$. $log\;Ca(ppm)=1.10{\cdot}log\;Na(ppm)-0.243{\pm}0.239$, $Ca(ppm)=0.0737{\cdot}K(ppm)+1.26{\pm}0.73$, $log\;Mg(ppm)=0.0950{\cdot}Na(ppm)+0.587{\pm}0.159$, $log\;Mg(ppm)=0.0518{\cdot}K(ppm)+0.111{\pm}0.102$, and $Na(ppm)=0.0771{\cdot}K(ppm)+1.49{\pm}0.59$. Logarithmic relations were found between each chemical conservative constituents except a relationship between the chloride and calcium contents at the region between Namji and Wondong, and the equations are as follows : $log\;Cl(ppm)=0.312{\cdot}log\;SO_4(ppm)+0.907{\pm}0.210$, $log\;Cl(ppm)=0.458{\cdot}log\;Mg(ppm)+0.135{\pm}0.130$, $Cl(ppm)=0.484{\cdot}logNa(ppm)+0.507{\pm}0.081$, $Cl(ppm)=0.0476{\cdot}K(ppm)+1.41{\pm}0.34$, $log\;SO_4(ppm)=0.886{\cdot}log\;Ca(ppm)+0.046{\pm}0.050$, $log\;SO_4(ppm)=0.422{\cdot}log\;Mg(ppm)+0.139{\pm}0.161$, $log\;SO_4(ppm)=0.374{\cdot}log\;Na(ppm)+0.603{\pm}0.140$, $log\;SO_4(ppm)=0.245{\cdot}log\;K(ppm)+0.023{\pm}0.102$, $log\;Ca(ppm)=0.587{\cdot}log\;Mg(ppm)+0.003{\pm}0.088$, $log\;Ca(ppm)=0.892{\cdot}log\;Na(ppm)+0.028{\pm}0.109$, $log\;Ca(ppm)=0.294{\cdot}log\;K(ppm)-0.001{\pm}0.085$, $log\;Mg(ppm)=0.600{\cdot}log\;Na(ppm)+0.674{\pm}0.120$, $log\;Mg(ppm)=0.440{\cdot}log\;K(ppm)+0.038{\pm}0.081$, and $log\;Na(ppm)=0.522{\cdot}log\;K(ppm)-0.260{\pm}0.072$.

  • PDF

Development of Extracting Solution for Soil Chemical Analysis Suitable to Integrated Ion-selective Micro-electrodes (집적형 이온선택성 미세전극 센서에 적합한 토양화학 분석용 침출액 종 개발)

  • Shin, Kook-Sik;Lim, Woo-Jin;Lee, Sang Eun;Lee, Jae Seon;Cha, Geun Sig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.513-521
    • /
    • 2009
  • The primary goal of this research was to develop an optimized analytical procedure for soil analysis based on ion-selective microelectrodes for agricultural purposes, which can perform on-site measurement of various ions in soil easily and rapidly. For the simple and rapid on-site diagnosis, an analysis of soil chemicals was performed employing a multicomponent-in-situ-extractant and an evaluation of ionselective microelectrodes were conducted through the regressive correlation method with a standard analytical approach widely employed in this area. Examination of sensor responses between various soil nutrient extractants revealed that 0.01M HCl and 1M LiCl provided the most ideal Nernstian response. However, 1M LiCl deteriorated the selective response for analytes due to high concentration (1M) of lithium cation. Thus, employing either 0.1M HCl as an extractant followed by 10 times dilution, or 0.01M HCl as an extractant without further dilution was chosen as the optimal extractant composition. A study of regressive correlation between results from ion-selective microelectrodes and those from the standard analytical procedure showed that analyses of $K^+$, $Na^+$, $Ca^{2+}$, and $NO_3{^-}$ showed the excellent consistency between two methods. However, the response for $NH_4{^+}$ suffered the severe interference from $K^+$. In addition, the selectivity for $Mg^{2+}$ over $Ca^{2+}$ was not sufficient enough since available ionophores developed so far do not provide such a high selectivity for $Mg^{2+}$. Therefore, as an agricultural on-site diagnostic instrument, the device in development requires further research on $NH_4{^+}$ analysis in the soil sample, development of $Mg^{2+}$-selective ionophore, and more detailed study focused on potassium, one of the most important plant nutrients.

Control of Mg and P Ion Concentration as a Precondition to Use N, K and Ca Ion Sensors in Closed Hydroponics (N, K, Ca의 한정된 이온센서 이용을 전제로 한 순환식 수경재배에서 P, Mg의 조절 방법)

  • Choi, Gyeong Lee;Yeo, Kyung Hwan;Rhee, Han Cheol;Lee, Seong Chan;Lee, Jung-Sup;Kang, Nam Jun;Kim, Hak Jin;Jung, Dae Hyun
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.871-877
    • /
    • 2016
  • Recycling nutrient solutions in closed hydroponic production systems is usually accompanied by an imbalance of nutrient solutions when concentration is controlled according to electrical conductivity (EC) levels. This study investigated whether it was possible to automatically control the concentrations of five essential elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) using only N, K and Ca ion sensors. N, P, K, Ca, and Mg uptake was measured in the nutrient solution, and relationships between absorbed ions were analyzed through twice-repeated experiments in lettuce. Results confirmed that the pattern of $PO_4$ ion uptake was similar that of N, and the pattern of Mg ion uptake was similar that of Ca. $PO_4$ ion uptake was most highly correlated with N, and Mg was most highly correlated with Ca. Regression coefficients of N and $PO_4$ were significantly different at 1.04 and 0.55, respectively, but were similar between Ca and Mg at 0.35 and 0.40, respectively. Additional experiments were conducted to measure nutrient uptake in pak choi and rose plants, both to confirm the results from the first experiment in lettuce, and to assess possible application to other crops. Coefficients of determination both for N and $PO_4$, and Ca and Mg were considerably high ($R^2=0.86$) in cultured pak choi, and similar results were observed in cultured rose ($R^2=0.87$ and 0.73, respectively). Regression coefficients for cultured pak choi were 0.56 and 0.24, respectively, and for rose were 0.51 and 0.16, respectively. Although the results obtained for N and $PO_4$ were not consistent between the lettuce experiments, N and $PO_4$ have similar regression coefficients for all crops. No common coefficient was found between Ca and Mg.