• Title/Summary/Keyword: pot-test

Search Result 228, Processing Time 0.046 seconds

In Fluence Chemicals From Artemisis argyi on the Growth of Selected Species of Plants and Microorganisms (황해쑥에 함유된 화학물질이 다른 식물과 미생물의 생장에 미치는 영향)

  • 길봉석;윤경원;이순엽;한동민
    • The Korean Journal of Ecology
    • /
    • v.17 no.1
    • /
    • pp.23-35
    • /
    • 1994
  • To investigate phytotoxic substances in Artemisia argyi, the donor plant, and their biological activities, seed germination and seedling growth of receptor plants such as Arundinella hirta, Echinochloa crus-galli, Rumex crispus and Lactuca sativa were examined at different concentrations of aqueous extracts of the donor plant. Germination of four receptor species was inhibited by the extracts, while seedling growth was decreased to a lesser degree than in the germintion test. Germination, seedling growth and dry weight growth of Achyranthes japonica grown in pot were proportionally inhibited by the extracts. Volatile substances emitted from A, argi plant caused slight inhibition in the germination and seedling growth of the receptor species. Essential oil of the plant extracted by Karlsruker's apparatus inhibited growth of microorganisms and callus growth of Pinellia ternata and Oryza sativa. The GC /MS method was employed for analysis and identification of allelochemicals from A. argyi leaves. Sixty-one chemical substances such as a-pinene, camphene, 1. 8-cineol, etc. were identified from essential oil of A. argyi. The results of this experiment on seed germination, seedling growth, microorganism culture and tissue culture indicated that naturally occurring chemical substances from A. argyi would be responsible for the growth inhibition of plants studied.

  • PDF

Development of Cylindrical Paperpot Manufacturing Equipment (원통형 종이포트 제조장치 개발)

  • Park, Minjung;Lee, Siyoung;Kang, Donghyeon;Kim, Jongkoo;Son, Jinkwan;Yoon, Sung-wook;An, Sewoong
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.242-248
    • /
    • 2017
  • This study was conducted to develop a cylindrical paperpot manufacturing equipment which is capable of continuously producing paperpots with a constant size. The equipment consists of the soil supply part, the paper supply part, the pot manufacturing part, the paperpot cutting part and its process for manufacturing paperpot from the soil supply to the paperpot cutting is continuously performed. As a result of the performance test using this equipment, we suggest that the optimal moisture content and injection pressure to supply soil are 50%~60%, and 0.5 Mpa respectively. Moreover the appropriate temperature for adhesive strength is $150{\sim}160^{\circ}C$ taking into account the performance of device and adhesion time. Also, considering the cutting speed and safety, it is appropriate to adopt a straight blade having a clean plan at a minimum angle of $30^{\circ}$. In addition, the manufacturing capacity of the developed equipment was 3300 pots per hour.

Comparative Study of Toxicological Methods and Field Resistance to Insecticides in Diamondback moth(Lepidoptera: Plutellidae) (배추좀나방(Plutella xylostella L.)의 독성시험방법 비교와 지역별 약제저항성에 관한 연구)

  • 이승찬;조영식;김도익
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.323-329
    • /
    • 1993
  • These studies were conducted to evaluate the five comparative test methods for detecting chemical resistance and to investigate resistant level of field populations of diamondback moth (Plutella xylostella L.). Leaf disc method was practically rocomrnendable because of its rapidity and low CV(l1.4%). Topical application method was a precise replicabiliLy(CV=8.00/0) but it was time consuming and difficult in mampulation. The other 3 methods showed higher CV ranging from 14.9% to 21.4%. Based on $LC_{50}$ values by topical application method, field populations of diamondback moth collected from 4 different regions, Kwangju, Kimhae, Jeju, and Inje to prothiofos showed from 3.3 to 61.1 times higher resistance than the susceptible strain, whereas to cypermethrin, Lhey were from 7.5 to 141.7 times higher than the susceptible. To cartap hydrochloride, they showed from 10.5- to 33.3-fold resistant levels as high as the susceptible. Finally, based on $LC_{50}$ values to Bacillus thuringiensis by leaf disc technique, the resistant levels of the field populations were from 1.9 Lo 8.1 times as compared to the susceptible.

  • PDF

Development of Antagonistic Microorganism for Biological Control of Pythium Blight of Turfgrass (잔디 피시움마름병(Pythium blight)의 생물학적 방제를 위한 길항 미생물의 선발과 효력 검정)

  • Jung, Woo-Chul;Shin, Taek-Su;Do, Ki-Suk;Kim, Won-Kuk;Lee, Jae-Ho;Choi, Ki-Hyun
    • Research in Plant Disease
    • /
    • v.12 no.3
    • /
    • pp.260-266
    • /
    • 2006
  • Pythium blight caused by Pythium spp. is one of major diseases in putting green of golf course. In this study, microorganisms which are anatgonistic to Pythium aphanidermatum, a pathogen of pythium blight, were selected primary through in vitro tests, dual culture method and triple layer agar diffusion method. In vivo test against pythium blight were conducted to select the best candidate biocontrol microorganism by pot experiment in a plastic house. Bacillus subtilis GB-0365 was finally selected as a biocontrol agent against pythium blight. Relative Performance Indies(RPI) was used as a criterion of selecting potential biocontrol agent. B. subtilis GB-0365 showed resistance to major synthetic agrochemicals used in golf course. Alternative application of synthetic agrochemicals and B. subtilis GB-0365 was most effective to successfully contol pythium blight. B. subtilis GB-0365 suppressed the development of pythium bight of bentgrass by 56.4% as compared to non-treated control and its disease control efficacy was 60.9% of a synthetic fungicide Oxapro(WP) efficacy. B. subtilis GB-0365 has a potential to be a biocontrol agent for control of pythium blight.

Antifungal Activity of Bacillus vallismortis 1A against Phytopathogen (식물병원균에 대한 Bacillus vallismortis 1A 균주의 항진균 활성)

  • Lee, Mi-Hye;Kim, Soo-Jin;Lee, Chang-Muk;Jang, Jae-Seon;Chang, Hai-Joong;Park, Min-Seon;Koo, Bon-Sung;Yoon, Sang-Hong;Yeo, Yun-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.5
    • /
    • pp.362-368
    • /
    • 2008
  • In order to isolate novel oligotrophic bacteria exhibiting antifungal activities, soils were collected from pepper-cultivated fields of Yeongyang, Jecheon, Nonsan, Eumsong and Goesan area in Korea. From soils in pepper cultivated area, a total of 9,354 strains were isolated as oligotrophic bacteria by the R2A dilution method. Among 9,354 oligotrohic bacteria candidates, 1A strain was selected by screening against Phytophthora capsici causing phytophthora blight of hot pepper in the greenhouse and field. The strain was identified as Bacillus vallismortis based on its 16S rDNA sequence and key characteristics as compared with those of authentic cultures of B. vallismortis(KACC 12149) and B. mojavensis(KACC 12096). The strain showed broad spectrum of antibiotic activity in vitro test, as revealed in its strong inhibitory activity to the genera Phytophthora, Collectotrichum, Botrytis and Fusarium, but not to Rhizoctonia and Magnaporthe. In pot experiments, infection rate of hot pepper in the non-treated pots was about 89%, while it was only 29% in the pots treated with 1A strain. The result indicated B. vallismortis 1A is a potential biocontrol agent for phytophthora blight of hot pepper

The Effect of Blue and Red LEDs Irradiation on The Growth Characteristics and Ginsenoside Content of Panax ginseng C. A. Meyer (청색과 적색의 혼합LED광 처리가 인삼의 생육 및 진세노사이드 함량에 미치는 영향)

  • Seong, Bong-Jae;Kim, Hyun-Ho;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.70-74
    • /
    • 2015
  • An LED plant factory farm is an alternative way to grow crops regardless of weather, season, and blight in such times of climate change. In recent years, it is a currently active and vibrant research field. The industry, which ranges from leaf vegetables to high value products, is expanding. This study was conducted to test tthe response of LED (Light-emitting diode) irradiation on the growth characteristics and ginsenoside levels indoors, in order to find out suitable light conditions. Ginseng seedling was transplanted from a styrofoam pot ($L{\times}W{\times}D$:$495{\times}315{\times}215mm$, inside diameter) into a closed plant production system in four blue LED (BL) and red LED (RL) different ratios of 1:1, 1;2, 1:3, 1:4 in a temperature range of $20{\sim}25^{\circ}C$, relative humidity of between 55 and 65%, and a 12-hour photoperiod. The LED irradiation shows the highest levels were found at 1:1 of BL and RL ratio at $61.21{\mu}mol\;s^{-l}m^{-2}$, 1:2 ratio $68.55{\mu}mol\;s^{-l}m^{-2}$, 1:3 ratio $63.85{\mu}mol\;s^{-l}m^{-2}$ and 1:4 ratio $62.41{\mu}mol\;s^{-l}m^{-2}$ from highest to lowest respectively. After analyzing from shoot and root 2 yers old ginseng plant which were cultivated under 1:3 irradiation of BL and RL ratio, it generally showed a positive effect under a 1:3 ratio of BL and RL.

Isolation and Identification of Stenotrophomonas maltophilia BW-13 Active Against Rhizoctonia solani Causing Crisphead Lettuce Bottom Rot (Rhizoctonia solani에 의한 결구상추 밑둥썩음병 방제균주 Stenotrophomonas maltophilia BW-13의 분리 및 동정)

  • Kim Han-Woo;Park Jong-Young;Kim Hyun-Ju;Lee Kwang-Youll;Lee Jin-Woo;Choi Woobong;Lee Seon-Woo;Moon Byung-Ju
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.152-157
    • /
    • 2005
  • In a course of searching for biofungicide to control crisphead lettuce bottom rot caused by Rhizoctonia solani, we have isolated an antagonistic bacterium from lettuce rhisophere soil. A total of 702 bacterial isolates were isolated and tested for in vitro growth inhibition of R. solani. Seven strains appeared to have strong antagonistic effect against R. solani in in vitro growth inhibition assay. In the pot experiments, a strain BW-13 showed the most potent disease control effect on the both lettuce seedlings and adults plants. Therefore, the BW-13 was selected as a biocotrol candidate against crisphead lettuce bottom rot. Based on its morphology, physiological characteristics, and 165 rRNA gene analysis, the BW-13 was finally identified as Stenotrophomonas maltophilia. This study indicated that S. maltophilia BW-13 could be used as a biocontrol agent to control crisphead lettuce bottom rot.

Influence of 4,6-disubstituted Heterocyclic Group on the Herbicidal Activity of N- (4,6-disubstituted pyrimidin-2-yl)aminocarbonyl-2-(1,1-ethylenedioxy-2-fluoro)ethylbenzenesuIfonamide Derivatives (N-(4,6-이치환-pyrlmidin-2-yl)aminocarbonyl-2-(1,1-ethyl-enedioxy-2-fluoro)ethylbenzenesulfonamide 유도체의 제초활성에 미치는 Hetero고리의 영향)

  • Lee, Sang-Ho;Ko, Young-Kwan;Kim, Dae-Whang;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.39 no.4
    • /
    • pp.297-303
    • /
    • 1996
  • A series of the herbicidal N-(4,6-disubstituted pyrimidin-2-yl)aminocarbonyl-2-(1,1-ethylenedioxy-2-fluoro)ethyIbenzenesulfonamides, 1 and N-(4,6-disubstituted triazin-2-yl)aminocarbonyl-2-(1,1-ethylenodioxy-2-flu ore)ethylbenzenosuIfonamides, 2 were synthesized and their herbicidal activities in-vivo against rice(Oryza sativa L.), barnyard grass (Echinochloa crus-galli), bulrush(Scripus juncoides) and pickerel weed(Monochoria vaginalis presl.) were measured by the pot test under the paddy conditions. The structure activity relationships(SAR) between the herbicidal activity$(pI_{50})$ and a various physicochemical parameters of the hetero group and 4,6-disubstituents on the heterocyclic group were analyzed by the multiple regression technique. The SAR suggest that the 4,6-dimethoxypyrimidine substituent, 1a showed selective$({\Delta}obs.pI_{50}=1.12)$ and the most highest activity against barnyard grass, which depend on the hydrophobicity(log P<0) of heterocyclo group and molecular refractivity$((M_R)_{opt.}=14.58cm^3/mol)$ constant of 4,6-disubstituents on the heterocyclic group.

  • PDF

Growth of Plug Seedlings of ‘Nokkwrang’ Pepper in Mixture of Used Rockwool and Woodchip Particles (폐암면과 목재 입자의 혼합비율에 따른 고추 플러그 묘의 생육)

  • Hwang, Seung-Jae;Kim, Oh-Im;Kim, Ik-Joon;Jeong, Byoung-Ryong
    • Journal of Bio-Environment Control
    • /
    • v.12 no.3
    • /
    • pp.166-172
    • /
    • 2003
  • Rockwool slabs used for hydroponic cultures are expected to have potential to be reused after breakdown as a growing medium component for hydroponic culture of vegetables and cut flowers, pot plants, or plug plants. This study was conducted to test the feasibility of using particles of used rockwool slabs (PURS) mixed with woodchips for growing plug seedlings of ‘Nokkufang’ pepper. In the first experiment growth of pepper seedlings was tested in media of steam sterilized PURS mixed with chestnut woodchips (CW), which was weatherized for six months and screened through 2.8 mm or 5.6 mm sieves, at 100:0, 75:25, 50:50, 28:75 or 0:100 (%, v/v). In the second experiment growth of pepper seedlings was tested in 20 different media containing steam sterilized PURS mixed with 4 mm chestnut woodchips (CW), 4 mm pinc woodchips (PW), coir, peatmoss, or perlite. In the first experiment, there were no significant growth differences as affectcd by particle size of CW, while the overall best growth was achieved il1 the control and l00% PURS. In the second experiment, seedling growth was enhanced as compared to the control in 100% PURS or PURS mixed with peatmoss, coir, or perlite. In contrast, growth was suppressed as the proportion of peatmoss or coir mixed with PURS decreased and the proportion of CW increased. Growth was better in the PURS + peatmoss than in the 100% PURS or PURS + coir, and when woodchips were mixed with coir than peatmoss.

Endophytic Trichoderma gamsii YIM PH30019: a promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng

  • Chen, Jin-Lian;Sun, Shi-Zhong;Miao, Cui-Ping;Wu, Kai;Chen, You-Wei;Xu, Li-Hua;Guan, Hui-Lin;Zhao, Li-Xing
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.315-324
    • /
    • 2016
  • Background: Biocontrol agents are regarded as promising and environmental friendly approaches as agrochemicals for phytodiseases that cause serious environmental and health problems. Trichoderma species have been widely used in suppression of soil-borne pathogens. In this study, an endophytic fungus, Trichoderma gamsii YIM PH30019, from healthy Panax notoginseng root was investigated for its biocontrol potential. Methods: In vitro detached healthy roots, and pot and field experiments were used to investigate the pathogenicity and biocontrol efficacy of T. gamsii YIM PH30019 to the host plant. The antagonistic mechanisms against test phytopathogens were analyzed using dual culture, scanning electron microscopy, and volatile organic compounds (VOCs). Tolerance to chemical fertilizers was also tested in a series of concentrations. Results: The results indicated that T. gamsii YIM PH30019 was nonpathogenic to the host, presented appreciable biocontrol efficacy, and could tolerate chemical fertilizer concentrations of up to 20%. T. gamsii YIM PH30019 displayed antagonistic activities against the pathogenic fungi of P. notoginseng via production of VOCs. On the basis of gas chromatography-mass spectrometry, VOCs were identified as dimethyl disulfide, dibenzofuran, methanethiol, ketones, etc., which are effective ingredients for antagonistic activity. T. gamsii YIM PH30019 was able to improve the seedlings' emergence and protect P. notoginseng plants from soil-borne disease in the continuous cropping field tests. Conclusion: The results suggest that the endophytic fungus T. gamsii YIM PH30019 may have a good potential as a biological control agent against notoginseng phytodiseases and can provide a clue to further illuminate the interactions between Trichoderma and phytopathogens.