• Title/Summary/Keyword: posture recognition

Search Result 136, Processing Time 0.024 seconds

Human Gesture Recognition Technology Based on User Experience for Multimedia Contents Control (멀티미디어 콘텐츠 제어를 위한 사용자 경험 기반 동작 인식 기술)

  • Kim, Yun-Sik;Park, Sang-Yun;Ok, Soo-Yol;Lee, Suk-Hwan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1196-1204
    • /
    • 2012
  • In this paper, a series of algorithms are proposed for controlling different kinds of multimedia contents and realizing interact between human and computer by using single input device. Human gesture recognition based on NUI is presented firstly in my paper. Since the image information we get it from camera is not sensitive for further processing, we transform it to YCbCr color space, and then morphological processing algorithm is used to delete unuseful noise. Boundary Energy and depth information is extracted for hand detection. After we receive the image of hand detection, PCA algorithm is used to recognize hand posture, difference image and moment method are used to detect hand centroid and extract trajectory of hand movement. 8 direction codes are defined for quantifying gesture trajectory, so the symbol value will be affirmed. Furthermore, HMM algorithm is used for hand gesture recognition based on the symbol value. According to series of methods we presented, we can control multimedia contents by using human gesture recognition. Through large numbers of experiments, the algorithms we presented have satisfying performance, hand detection rate is up to 94.25%, gesture recognition rate exceed 92.6%, hand posture recognition rate can achieve 85.86%, and face detection rate is up to 89.58%. According to these experiment results, we can control many kinds of multimedia contents on computer effectively, such as video player, MP3, e-book and so on.

Development and Usability Evaluation of Hand Rehabilitation Training System Using Multi-Channel EMG-Based Deep Learning Hand Posture Recognition (다채널 근전도 기반 딥러닝 동작 인식을 활용한 손 재활 훈련시스템 개발 및 사용성 평가)

  • Ahn, Sung Moo;Lee, Gun Hee;Kim, Se Jin;Bae, So Jeong;Lee, Hyun Ju;Oh, Do Chang;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.361-368
    • /
    • 2022
  • The purpose of this study was to develop a hand rehabilitation training system for hemiplegic patients. We also tried to find out five hand postures (WF: Wrist Flexion, WE: Wrist Extension, BG: Ball Grip, HG: Hook Grip, RE: Rest) in real-time using multi-channel EMG-based deep learning. We performed a pre-processing method that converts to Spider Chart image data for the classification of hand movement from five test subjects (total 1,500 data sets) using Convolution Neural Networks (CNN) deep learning with an 8-channel armband. As a result of this study, the recognition accuracy was 92% for WF, 94% for WE, 76% for BG, 82% for HG, and 88% for RE. Also, ten physical therapists participated for the usability evaluation. The questionnaire consisted of 7 items of acceptance, interest, and satisfaction, and the mean and standard deviation were calculated by dividing each into a 5-point scale. As a result, high scores were obtained in immersion and interest in game (4.6±0.43), convenience of the device (4.9±0.30), and satisfaction after treatment (4.1±0.48). On the other hand, Conformity of intention for treatment (3.90±0.49) was relatively low. This is thought to be because the game play may be difficult depending on the degree of spasticity of the hemiplegic patient, and compensation may occur in patient with weakened target muscles. Therefore, it is necessary to develop a rehabilitation program suitable for the degree of disability of the patient.

Development of a Hand Pose Rally System Based on Image Processing

  • Suganuma, Akira;Nishi, Koki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.340-348
    • /
    • 2015
  • The "stamp rally" is an event that participants go the round with predetermined points for the purpose of collecting stamps. They bring the stamp card to these points. They, however, sometimes leave or lose the card. In this case, they may not reach the final destination of the stamp rally. The purpose of this research is the construction of the stamp rally system which distinguishes each participant with his or her hand instead of the stamp card. We have realized our method distinguishing a hand posture by the image processing. We have also evaluated it by 30 examinees. Furthermore, we have designed the data communication between the server and the checkpoint to implement our whole system. We have also designed and implemented the process for the registering participant, the passing checkpoint and the administration.

Development of exercise posture training system using deep learning for human posture recognition (인체 자세 인식 딥러닝을 이용한 운동 자세 훈련 시스템 개발)

  • Jang, Jae-Ho;Jee, Jun-Hwan;Kim, Du-Hwan;Choi, Min-Gi;Yun, Tae-Jin
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.289-290
    • /
    • 2020
  • 본 논문에서는 오픈 소스인 openpose skeleton tracking 기술을 이용하여 특정 운동 동작을 영상처리 기술과 딥러닝 기술로 인체 자세에 대해서 인지와 상황 판단하여 운동 동작에 대한 인식 결과를 도출할 수 있다. 먼저 입력받은 영상을 전달받아서 딥러닝 인식 시스템를 통해 인식 결과을 추출한 뒤 비교, 분석한 후에 사전 등록된 운동 동작 명칭으로 화면에 표시하여 이용자가 정확한 동작을 취할 수 있도록 지도하는 데 활용할 수 있다. 또한, 이 기술은 행동 인식부터 얼굴 인식, 손동작 인식 등에 다양하게 활용할 수 있다.

  • PDF

A Design and Implementation of Exercise Posture Correction Application based on Kinect Sensor (Kinect Sensor 기반의 운동 자세 교정 애플리케이션 설계 및 구현)

  • Won Joo Lee;Sa Hyeoung Kim;Tae Jin Yu;Jeoung Min Lee;Hyeon Ung Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.59-60
    • /
    • 2024
  • 본 논문에서는 키넥트 센서 기반의 운동 자세 교정 애플리케이션를 설계하고 구현한다. 이 애플리케이션은 사용자의 운동 자세를 실시간으로 감지하고 분석하여, 잘못된 자세를 교정하는 기능을 제공한다. 키넥트 센서는 사용자의 움직임을 3D로 캡처하여 자세의 정확도를 평가하며, 개선이 필요한 부분에 대한 피드백을 제공한다. 또한, 사용자가 올바른 운동 자세를 유지할 수 있도록 지원하며, 장기적으로는 운동 효과를 극대화하고 부상 위험을 줄이는 데 기여한다. 또한, 이 애플리케이션은 개인 트레이너의 필요성을 줄이고, 사용자가 스스로 운동 자세를 교정할 수 있도록 도와준다.

  • PDF

Research on Human Posture Recognition System Based on The Object Detection Dataset (객체 감지 데이터 셋 기반 인체 자세 인식시스템 연구)

  • Liu, Yan;Li, Lai-Cun;Lu, Jing-Xuan;Xu, Meng;Jeong, Yang-Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.111-118
    • /
    • 2022
  • In computer vision research, the two-dimensional human pose is a very extensive research direction, especially in pose tracking and behavior recognition, which has very important research significance. The acquisition of human pose targets, which is essentially the study of how to accurately identify human targets from pictures, is of great research significance and has been a hot research topic of great interest in recent years. Human pose recognition is used in artificial intelligence on the one hand and in daily life on the other. The excellent effect of pose recognition is mainly determined by the success rate and the accuracy of the recognition process, so it reflects the importance of human pose recognition in terms of recognition rate. In this human body gesture recognition, the human body is divided into 17 key points for labeling. Not only that but also the key points are segmented to ensure the accuracy of the labeling information. In the recognition design, use the comprehensive data set MS COCO for deep learning to design a neural network model to train a large number of samples, from simple step-by-step to efficient training, so that a good accuracy rate can be obtained.

A Study on a Feedback-Centric Piano Education System Using Kinect Sensors (키넥트를 활용한 피드백 중심의 피아노 교육 방안 연구)

  • Park, So Hyun;Ihm, Sun Young;Park, Eun Young;Son, Jong Seo;Park, Young Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.403-408
    • /
    • 2015
  • Kinect sensors have the ability to recognize the behavior and voice of the user. Due to its low-cost and high accessibility, Kinect sensors have been used in various fields, including healthcare, education and so on. In this paper, we propose to use Kinect in piano education. Specifically, the proposed method first recognizes the coordinate values of user's posture, compares them with coordinate values of teacher's posture and provide real-time feedbacks to the user. This enables user to keep the correct posture even when he is learning piano without a teacher. However, since the piano education is a long process, it is difficult to achieve the correct posture as a teacher immediately. Thus, we propose a user-oriented method to measure the error tolerance rate. The proposed method is the first feedback based piano education system that uses Kinect sensors.

A Design and Implementation of Fitness Application Based on Kinect Sensor

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • In this paper, we design and implement KITNESS, a windows application that feeds back the accuracy of fitness motions based on Kinect sensors. The feature of this application is to use Kinect's camera and joint recognition sensor to give feedback to the user to exercise in the correct fitness position. At this time, the distance between the user and the Kinect is measured using Kinect's IR Emitter and IR Depth Sensor, and the joint, which is the user's joint position, and the Skeleton data of each joint are measured. Using this data, a certain distance is calculated for each joint position and posture of the user, and the accuracy of the posture is determined. And it is implemented so that users can check their posture through Kinect's RGB camera. That is, if the user's posture is correct, the skeleton information is displayed as a green line, and if it is not correct, the inaccurate part is displayed as a red line to inform intuitively. Through this application, the user receives feedback on the accuracy of the exercise position, so he can exercise himself in the correct position. This application classifies the exercise area into three areas: neck, waist, and leg, and increases the recognition rate of Kinect by excluding positions that Kinect does not recognize due to overlapping joints in the position of each exercise area. And at the end of the application, the last exercise is shown as an image for 5 seconds to inspire a sense of accomplishment and to continuously exercise.

Development of Computer Vision System for Individual Recognition and Feature Information of Cow (I) - Individual recognition using the speckle pattern of cow - (젖소의 개체인식 및 형상 정보화를 위한 컴퓨터 시각 시스템 개발 (I) - 반문에 의한 개체인식 -)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • v.27 no.2
    • /
    • pp.151-160
    • /
    • 2002
  • Cow image processing technique would be useful not only for recognizing an individual but also for establishing the image database and analyzing the shape of cows. A cow (Holstein) has usually the unique speckle pattern. In this study, the individual recognition of cow was carried out using the speckle pattern and the content-based image retrieval technique. Sixty cow images of 16 heads were captured under outdoor illumination, which were complicated images due to shadow, obstacles and walking posture of cow. Sixteen images were selected as the reference image for each cow and 44 query images were used for evaluating the efficiency of individual recognition by matching to each reference image. Run-lengths and positions of runs across speckle area were calculated from 40 horizontal line profiles for ROI (region of interest) in a cow body image after 3 passes of 5$\times$5 median filtering. A similarity measure for recognizing cow individuals was calculated using Euclidean distance of normalized G-frame histogram (GH). normalized speckle run-length (BRL), normalized x and y positions (BRX, BRY) of speckle runs. This study evaluated the efficiency of individual recognition of cow using Recall(Success rate) and AVRR(Average rank of relevant images). Success rate of individual recognition was 100% when GH, BRL, BRX and BRY were used as image query indices. It was concluded that the histogram as global property and the information of speckle runs as local properties were good image features for individual recognition and the developed system of individual recognition was reliable.

Gesture Recognition and Motion Evaluation Using Appearance Information of Pose in Parametric Gesture Space (파라메트릭 제스처 공간에서 포즈의 외관 정보를 이용한 제스처 인식과 동작 평가)

  • Lee, Chil-Woo;Lee, Yong-Jae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1035-1045
    • /
    • 2004
  • In this paper, we describe a method that can recognize gestures and evaluate the degree of the gestures from sequential gesture images by using Gesture Feature Space. The previous popular methods based on HMM and neural network have difficulties in recognizing the degree of gesture even though it can classify gesture into some kinds. However, our proposed method can recognize not only posture but also the degree information of the gestures, such as speed and magnitude by calculating distance among the position vectors substituting input and model images in parametric eigenspace. This method which can be applied in various applications such as intelligent interface systems and surveillance systems is a simple and robust recognition algorithm.

  • PDF