• Title/Summary/Keyword: postharvest processability

Search Result 2, Processing Time 0.02 seconds

Influence of Plasticizers on Mechanical, Thermal, and Migration Properties of Poly(Lactic Acid)/Zeolite Composites

  • Qin, Pei;Jung, Hyun-Mo;Choi, Dong-Soo;Hwang, Sung-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.2_1
    • /
    • pp.79-89
    • /
    • 2021
  • Poly(lactic acid) (PLA) is considered as one of the most promising bio-based polymers due to its high strength, high modulus, good processability, transparency after processing, and commercial availability. This study aimed to investigate the mechanical, thermal, and migration properties of poly(lactic acid)/zeolite (10 phr) composites prepared with various biocompatible plasticizers, such as triethyl citrate(TEC), tributyl citrate(TBC), and poly(ethylene glycol)(PEG400), through differential scanning calorimetry(DSC), thermo-gravimetric analysis(TGA) and standard tensile testing. The incorporation of PEG400 significantly increased the elongation at break, and DSC results showed that the addition of plasticizers drastically decreased the Tg of PLA/zeolite composites and improved the melt flow and processability. Besides, it was found from TGA results that PLA/zeolites composites plasticized by TEC and TBC were more easily to be thermally degraded than the composites plasticized by PEG400.

Effect of Mechanical Stress on Postharvest Quality of Baby Leaf Vegetables (재배조건에 따른 어린잎 채소 '다채'의 수확 후 품질변화)

  • Lee, Hye-Eun;Lee, Jung-Soo;Choi, Ji-Weon;Pae, Do-Ham;Do, Kyung-Ran
    • Food Science and Preservation
    • /
    • v.16 no.5
    • /
    • pp.699-704
    • /
    • 2009
  • Commercially produced 'baby leaves' of Brassica campestris var. narinosa (Chinese cabbage) were used in the present study. Baby leaf vegetables were sown on 128 cell plug trays and harvested 30 days after sowing. For mechanical stress experiments, seedlings were thinned to three per cell, selected for uniformity, and watered at the base. Trays were treated with mechanical stress by stroking back and forth 50 times, using a sheet of A4 paper folded to double thickness. Plants were treated between 12:00 and 14:00 daily for 15-20 days. Harvested baby leaf vegetables were packed in MAP salad bags made of P-plus film, $50{\mu}m$ polypropylene (PP) film, and polyethylene terephthalate (PET) boxes. Fresh weight was well-maintained under P-plus and PP film on storage at $8^{\circ}C$. However, loss of fresh weight occurred quickly in PET boxes, and vegetable quality deteriorated rapidly. Stressed leaves were smaller but thicker, with an increased dry weight ratio. We thus suggest that P-plus or PP film is most appropriate packing for marketing of baby leaf vegetables, which should be stored at $8^{\circ}C$. Our data on baby leaf vegetables also make a significant new contribution in that we demonstrate a positive effect of stress touching on baby leaf processability.