• 제목/요약/키워드: posterior dynamic stabilization system

검색결과 8건 처리시간 0.025초

Change of Lumbar Motion after Multi-Level Posterior Dynamic Stabilization with Bioflex System : 1 Year Follow Up

  • Park, Hun-Ho;Zhang, Ho-Yeol;Cho, Bo-Young;Park, Jeong-Yoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권4호
    • /
    • pp.285-291
    • /
    • 2009
  • Objective : This study examined the change of range of motion (ROM) at the segments within the dynamic posterior stabilization, segments above and below the system, the clinical course and analyzed the factors influencing them. Methods : This study included a consecutive 27 patients who underwent one-level to three-level dynamic stabilization with Bioflex system at our institute. All of these patients with degenerative disc disease underwent decompressive laminectomy with/without discectomy and dynamic stabilization with Bioflex system at the laminectomy level without fusion. Visual analogue scale (VAS) scores for back and leg pain, whole lumbar lordosis (from L1 to S1), ROMs from preoperative, immediate postoperative, 1.5, 3, 6, 12 months at whole lumbar (from L1 to S1), each instrumented levels, and one segment above and below this instrumentation were evaluated. Results : VAS scores for leg and back pain decreased significantly throughout the whole study period. Whole lumbar lordosis remained within preoperative range, ROM of whole lumbar and instrumented levels showed a significant decrease. ROM of one level upper and lower to the instrumentation increased, but statistically invalid. There were also 5 cases of complications related with the fixation system. Conclusion : Bioflex posterior dynamic stabilization system supports operation-induced unstable, destroyed segments and assists in physiological motion and stabilization at the instrumented level, decrease back and leg pain, maintain preoperative lumbar lordotic angle and reduce ROM of whole lumbar and instrumented segments. Prevention of adjacent segment degeneration and complication rates are something to be reconsidered through longer follow up period.

Posterior Dynamic Stabilization System의 요추거동에 대한 생체역학적 분석 (Biomechanical Effects of Posterior Dynamic Stabilization System on Lumbar Kinematics: A Finite Element Analysis)

  • 안윤호;;장덕영;박경우;이성재
    • 대한의용생체공학회:의공학회지
    • /
    • 제29권2호
    • /
    • pp.139-145
    • /
    • 2008
  • Many recent studies suggest that the posterior dynamic stabilization(PDS) can be a more physiologically-relevant alternative to the rigid fixation for the patients suffering from low back pain. However, its biomechanical effects or clinically proven efficacies still remain unknown. In this study, we evaluated kinematic behaviors of the lower lumbar spine with the PDS system and then compared to those of the rigid fixation system using finite element (FE) analysis. A validated FE model of intact lumbar spine(L2-L5) was developed. The implanted model was then constructed after modification from the intact to simulate two kinds of pedicle screw systems (PDS and the rigid fixation). Hybrid protocol was used to flex, extend, laterally bend and axially rotate the FE model. Results showed that the PDS systems are more flexible than rigid fixation systems, yet not flexible enough to preserve motion. PDS system allowed $16.2{\sim}42.2%$ more intersegmental rotation than the rigid fixation at the implanted level. One the other hand, at the adjacent level it allowed more range of motion ($2.0%{\sim}8.3%$) than the rigid fixation. The center of rotation of the PDS model remained closer to that of the intact spine. These results suggest that the PDS system could be able to prevent excessive motion at the adjacent levels and restore the spinal kinematics.

NFlex Dynamic Stabilization System : Two-Year Clinical Outcomes of Multi-Center Study

  • Coe, Jeffrey D.;Kitchel, Scott H.;Meisel, Hans Jorg;Wingo, Charles H.;Lee, Soo-Eon;Jahng, Tae-Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • 제51권6호
    • /
    • pp.343-349
    • /
    • 2012
  • Objective : Pedicle-based dynamic stabilization systems, in which semi-rigid rods or cords are used to restrict or control spinal segmental motion, aim to reduce or eliminate the drawbacks associated with rigid fusion. In this study, we analyzed the two-year clinical outcomes of patients treated with the NFlex (Synthes Spine, Inc.), a pedicle-based dynamic stabilization system. Methods : Five sites participated in a retrospective study of 72 consecutive patients who underwent NFlex stabilization. Of these 72 patients, 65 were available for 2-year follow-up. Patients were included based on the presence of degenerative disc disease (29 patients), degenerative spondylolisthesis (16 patients), lumbar stenosis (9 patients), adjacent segment degeneration (6 patients), and degenerative lumbar scoliosis (5 patients). The clinical outcome measures at each assessment were Visual Analogue Scale (VAS) to measure back pain, and Oswestry Disability Index (ODI) to measure functional status. Radiographic assessments included evidence of instrumentation failure or screw loosening. Results : Sixty-five patients (26 men and 39 women) with a mean age of 54.5 years were included. Mean follow-up was 25.6 months. The mean VAS score improved from 8.1 preoperatively to 3.8 postoperatively, representing a 53% improvement, and the ODI score from 44.5 to 21.8, representing a 51% improvement. Improvements in pain and disability scores were statistically significant. Three implant-related complications were observed. Conclusion : Posterior pedicle-based dynamic stabilization using the NFlex system seems effective in improving pain and functional scores, with sustained clinical improvement after two years. With appropriate patient selection, it may be considered an effective alternative to rigid fusion.

후방 요추 극돌기간 유동적 오메가형 스프링 고정재의 역학적 평가 (Mechanical Evaluation of Posterior Dynamic Omega-wire Stabilization System)

  • 이연수;송근수
    • 대한기계학회논문집B
    • /
    • 제36권11호
    • /
    • pp.1099-1104
    • /
    • 2012
  • 본 연구에서는 새로운 후방요추간체의 고정재로서 뼈에 나사를 삽입고정하지 않고 후방요추간체에 걸어 시술하는 형상기억합금을 이용한 오메가형 스프링 유동적 고정재의 기계적 변형특성을 평가하였다. 사용된 오메가와형 스프링 고정재에 대해 인장, 압축, 동적피로시험을 실시하였다. 또한, 기존에 시판 중인 후방요추간체에 나사를 삽입하여 시술되는 나선형 스프링 유동적 고정재와 함께 유한요소방법을 이용하여 허리를 굽힐 때 가해지는 굽힘에 대한 변형해석을 실시하였다. 오메가형 스프링 고정재의 양단 고리중심간 거리가 60 mm인 시편의 평균 극한 인장하중은 3981.7 N, 평균 극한 압축하중은 535.6 N으로 나타났으며, 5 Hz의 반복주기로 10 N/1N의 압축피로하중을 가할 경우 5백만회 반복하는 동안 파단 없이 8~9 mm의 압축변위가 발생하였다. FEA 결과에서 보면 오메가형 스프링 고정재가 나선형 스프링 고정재보다 허리 굽힘에 대해 유연한 변형특성을 보였다.

Radicular Pain due to Subsidence of the Nitinol Shape Memory Loop for Stabilization after Lumbar Decompressive Laminectomy

  • Son, Byung-Chul;Kim, Deog-Ryeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제57권1호
    • /
    • pp.61-64
    • /
    • 2015
  • A number of dynamic stabilization systems have been used to overcome the problems associated with spinal fusion with rigid fixation recently and the demand for an ideal dynamic stabilization system is greater for younger patients with multisegment disc degeneration. Nitinol, a shape memory alloy of nickel and titanium, is flexible at low temperatures and regains its original shape when heated, and the Nitinol shape memory loop (SML) implant has been used as a posterior tension band mostly in decompressive laminectomy cases because the Nitinol implant has various characteristics such as high elasticity and a tensile force, flexibility, and biological compatibility. The reported short-term outcomes of the application of SMLs as posterior column supporters in cervical and lumbar decompressive laminectomies seem to be positive, and complications are minimal except for the rare occurrence of pullout and fracture of the SML. However, there was no report of neurological complications related to neural compression in spite of the use of the loop of SML in the epidural space. The authors report a case of delayed development of radiating pain caused by subsidence of the SML resulting epidural compression.

The BioFlex System as a Dynamic Stabilization Device : Does It Preserve Lumbar Motion?

  • Zhang, Ho-Yeol;Park, Jeong-Yoon;Cho, Bo-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제46권5호
    • /
    • pp.431-436
    • /
    • 2009
  • Objective : This study examines whether functional motion is present at one or more years after Bioflex System placement. BioFlex System is a flexible rod system which has been used to preserve motion at the area of implantation. There has not been a scientific study showing how much motion is preserved after implantation. Methods : A total of 12 consecutive patients underwent posterior dynamic stabilization using the BioFlex System. Six patients were treated using a L3-4-5 construct and other six patients using a L4-5-S1 construct. Follow-up ranged from 12 to 33 months and standing neutral lateral, extension, flexion and posteroanterior (PA) radiographs were obtained at 3, 6, 9, and 12 months and at more than 12 months postoperatively. Range of motion (ROM), whole lumbar lordosis, and ROMs of motion segments from L2 to S1 were determined. Results : Patients with a L3-4-5 construct demonstrated a decrease in mean ROM for whole lumbar decreased from 40.08 to 30.77. Mean ROM for L3-4 (6.12 to 2.20) and L4-5 (6.55 to 1.67) also decreased after one year. Patients with a L4-5-S1 construct demonstrated L4-5 (8.75 to 2.70) and L5-S1 (9.97 to 3.25) decrease of mean ROM at one year postoperatively. Lumbar lordosis was preservep at both L3-4-5 and L4-5-S1 constructs. Clinical results showed significant improvements in both study groups. Conclusion : The present study provides preliminary information regarding the BioFlex motion preservation system. We conclude that the BioFlex System preserves functional motion to some degree at instrumented levels. However, although total lumbar lordosis was preserved, ROMs at implantation segments were lower than preoperative values.

Short-term effects of joint mobilization with versus without voluntary movement in patients with chronic ankle instability: A single-blind randomized controlled trial

  • Kim, Hyunjoong;Song, Seonghyeok;Lee, Sangbong;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • 제10권1호
    • /
    • pp.1-9
    • /
    • 2021
  • Objective: Joint mobilization for arthrokinematics altered by the positional fault of chronic ankle instability (CAI) is an effective intervention for stabilization. In this study, we compared the effects of ankle dorsi flexion range of motion (DFROM) and dynamic balance ability (DBA) in CAI patients via passive joint mobilization (PJM), a method traditionally performed in previous studies, and active joint mobilization (AJM), a method that can have a greater effect on cortical excitability with spontaneous movements. Design: Single-blind two-arm randomized controlled trial Methods: A total of 30 participants were registered: 15 each to the PJM and AJM groups. Each participant received a total of 10 intervention sessions, 10 minutes per session, 5 times a week for 2 weeks. PJM used Maitland's mobilization method to apply joint mobilization with talus in the posterior direction and AJM used an angular joint motion to induce patient's voluntary motion of medial malleolus anterior gliding and lateral malleolus posterior gliding, respectively. DFROM of the ankle was measured by using tape and DBA was evaluated by using the balance system. Results: Significant improvement was observed after intervention in both the PJM and AJM groups except for the DBA-anterior and DBA-right variables of the PJM group. There were statistically significant differences between the AJM and PJM groups in the DFROM, DBA-anterior, DBA-posterior, and DBA-right variables. Conclusions: The overall improvement of DFROM and DBA was found to be more effective in joint mobilization including voluntary movement. When it is accompanied by voluntary movement, it further affects the neuromuscular system of the ankle.

최대교두감합위 및 하악 전방운동 시의 교합접촉 및 교합유도 양상에 관한 분석 (Analysis of occlusal contact and guidance pattern during maximal intercuspal position and protrusive movement)

  • 김지연;김강현;노관태;김형섭;우이형;배아란
    • 대한치과보철학회지
    • /
    • 제51권3호
    • /
    • pp.199-207
    • /
    • 2013
  • 연구 목적: 저작 및 하악 운동시 발생되는 치아접촉은 치열의 보존, 하악의 안정과 보철 수복과정에 있어서 중요하다. 이에 한국인의 20-30대 성인을 대상으로 최대교두감합위에서의 치아접촉점의 위치 및 교합유도양상과 교합유도치의 분포를 분석하여 알아보고자 한다. 연구 대상 및 방법: 29명의 성인을 대상으로 하악의 최대교두감합위에서의 치아접촉점의 위치와 분포 및 전방운동시 교합접촉양상을 shimstock foil (Whaledent, Langenau, Germany), T-Scan III (Tekscan Inc., Boston, MA, USA), polyvinylsiloxane registration material (Genie Bite, Sultan Healthcare, Hackensack, NJ, USA)을 이용하여 측정하였다. 측정시 자세는 직립위로 Frankfurt horizontal plane과 지면이 수평이 되도록 앉게 하였으며 접촉이 재현될 때까지 수 차례 반복한 후 3회씩 측정하였다. 최대교두감합위에서 세가지 방법 간의 통계적 유의성을 비교하기 Fisher's Exact Test (R-General Public License, ver. 2.14.1)를 이용하였고, 전방 운동시 Pearson's Test를 통해 통계 검증하였다(${\alpha}=.05$). 결과: 최대교두감합위에서의 치아 접촉 양상을 shimstock foil, T-Scan III, polyvinylsiloxane registration material로 측정시 전치부, 소구치부, 구치부 모두에서 접촉하는 경우가 대부분이었으며, shimstock 사용시 약51%의 최대교두감합위는 전치부 접촉에서 일어났다. Shimstock foil과 T-Scan III를 사용하여 전방운동 측정시 중절치의 접촉이 가장 많이 일어났다. 결론: 최대교두감합위에서 실제 모든 치아의 접촉이 이루어지지 않는 경우가 있었으며 따라서 구치부에서 전치부를 보호해 주고 있음을 확인할 수 있었다. 또한, 전방운동 시 전치부의 치아접촉은 과도한 구치부의 치아접촉을 방지해 전치부가 구치부를 보호해 주고 있었다. 따라서 교합 재구성 시에는 이러한 상호 보호 교합에 대한 고려가 필요하다.