DOI QR코드

DOI QR Code

Mechanical Evaluation of Posterior Dynamic Omega-wire Stabilization System

후방 요추 극돌기간 유동적 오메가형 스프링 고정재의 역학적 평가

  • Lee, Yeon-Soo (Dept. of Biomedical Engineering, Catholic Univ. of Daegu) ;
  • Song, Geun-Soo (Dept. of Biomedical Engineering, Catholic Univ. of Daegu)
  • 이연수 (대구가톨릭대학교 의공학과) ;
  • 송근수 (대구가톨릭대학교 의공학과)
  • Received : 2012.04.19
  • Accepted : 2012.08.24
  • Published : 2012.11.01

Abstract

The study investigates the mechanical deformation of a newly developed screwless omega-wire dynamic system for stabilization of the spine. The omega-wire spring stabilization system was tested under tension, compression, and dynamic compressive fatigue loads. In addition, its bending deformation was compared to that of a spiral-wire spring system using FEA. A model whose hanger inter-center distance is 60 mm showed an ultimate tensile stress of 3981.7 N at a displacement of 3.61 mm and an ultimate compressive load of 535.6 N at a displacement of 2.16 mm. Under fatigue loading of 5 Hz with 10 N/1 N, it did not show any failure over 5 million cycles, and the displacement was restricted to 8-9 mm. In the FEA, the omega-wire spring system showed more flexible bending features than did the spiral-wire spring system.

본 연구에서는 새로운 후방요추간체의 고정재로서 뼈에 나사를 삽입고정하지 않고 후방요추간체에 걸어 시술하는 형상기억합금을 이용한 오메가형 스프링 유동적 고정재의 기계적 변형특성을 평가하였다. 사용된 오메가와형 스프링 고정재에 대해 인장, 압축, 동적피로시험을 실시하였다. 또한, 기존에 시판 중인 후방요추간체에 나사를 삽입하여 시술되는 나선형 스프링 유동적 고정재와 함께 유한요소방법을 이용하여 허리를 굽힐 때 가해지는 굽힘에 대한 변형해석을 실시하였다. 오메가형 스프링 고정재의 양단 고리중심간 거리가 60 mm인 시편의 평균 극한 인장하중은 3981.7 N, 평균 극한 압축하중은 535.6 N으로 나타났으며, 5 Hz의 반복주기로 10 N/1N의 압축피로하중을 가할 경우 5백만회 반복하는 동안 파단 없이 8~9 mm의 압축변위가 발생하였다. FEA 결과에서 보면 오메가형 스프링 고정재가 나선형 스프링 고정재보다 허리 굽힘에 대해 유연한 변형특성을 보였다.

Keywords

References

  1. Kang, K. T., Chun, H. J., Son. J. H., Kim, H. J., Moon, S. H., Lee, H. M. and Kim, K. Y., 2009, "The Comparison of Biomechanical Changes Between Spinous Process Osteotomy and Conventional Laminectomy," Trans. of the KSME (A), Vol. 33, No. 7, pp. 645-651. https://doi.org/10.3795/KSME-A.2009.33.7.645
  2. Park, J. H., Heo, S., Son, K., Lee, S. J., 2006, "Biomechanical Analysis of Lumbar Interspinous Process Fixators and Design of Miniaturization and Advanced Flexibility," Trans. of the KSME (A), Vol. 30, No. 12, pp. 1509-1517. https://doi.org/10.3795/KSME-A.2006.30.12.1509
  3. Kim, J. W., Jeong, J. H., Park, Y. S., Lee, K. C. and Lee, Y. B., 2006, "Surgical Considerations in Posterior Stabilization of the Cervicothoracic Junction," Dongguk Journal of Med., Vol. 13, No. 2, pp. 43-51.
  4. Kim, S. M., I. C. Y. and Kang, H. C., 2010, "A Study of Bio-mechanical Simulation Model for Spinal Fusion using Spinal Fixation System," KSPE J., Vol. 27, No. 2, pp. 137-144.
  5. Kim, Y. H., Park, W. M., Kim, K., Park, H. K., Joo, J. W. and Park, K. W., 2006, "Biomechanical Evaluation of SMA Dynamic Stabilization for Spinal Fusion," 2006 KSPE spring Conference, Gyong-ju J., Vol. 2006, No. 5, pp. 517-518.
  6. Kumar, M. N., Baklanov, A. and Chopin, D., 2001, "Correlation Between Sagittal Plane Changes and Adjacent Segment Degeneration Following Lumbar Spine Fusion," Eur. Spine J., Vol. 10, No. 4, pp. 314-319. https://doi.org/10.1007/s005860000239
  7. Lee, C. K., 1988, "Accelerated Degeneration of the Segment Adjacent to a Lumbar Fusion," Spine, Vol. 13, No. 3, pp. 375-377. https://doi.org/10.1097/00007632-198803000-00029
  8. Lemann, T. R., Spratt, K F., Tozzi, J. E., Weinstein, J. N., Reinarz, S. J., el-Khoury, G. Y. and Colby, H., 1987, "Long-Term Follow-up of Lower Lumbar Fusion Patients," Spine, Vol. 12, No 2, pp. 97-104. https://doi.org/10.1097/00007632-198703000-00004
  9. Roh, J. H., 2010, "Thermomechanical Characteristrics of SMAs with Strain-Rate Dependence," KSAS J., Vol. 38, No. 2, pp. 129-134.
  10. Lee, J. D., Cheong, S. H., Choi, S. D., Kim, H. M., 2006, "Effect of $\gamma$-Ray Irradiation on Mechanical Properties of Ultra-High Molecular Weight Polyethylene," Transactions of the Korean Society of Machine Tool Engineers, Vol. 17, No. 3, pp. 108-114.