• Title/Summary/Keyword: post-harvest diseases

Search Result 19, Processing Time 0.028 seconds

Fumigant Activity of Essential Oils and Components of Illicium verum and Schizonepeta tenuifolia Against Botrytis cinerea and Colletotrichum gloeosporioides

  • Lee, Sun-Og;Park, Il-Kwon;Choi, Gyung-Ja;Lim, He-Kyoung;Jang, Kyong-Soo;Cho, Kwang-Yun;Shin, Sang-Cheol;Kim, Jin-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.9
    • /
    • pp.1568-1572
    • /
    • 2007
  • To develop a natural fungicide against Botrytis cinerea and Colletotrichum gloeosporioides, a total of 25 essential oils were tested for their fumigant activity against post-harvest pathogens. The vaporous phases of oils were treated to each fungus on potato dextrose agar medium in half-plate separated Petri plates at $10\;{\mu}g$ per plate. The essential oil of Illicium verum strongly inhibited the mycelial growth of both B. cinerea and C. gloeosporioides by over 90%. On the other hand, the essential oil of Schizonepeta tenuifolia showed inhibitory activity against mycelial growth of only B. cinerea by over 90%. Gas chromatography-mass spectrometry and bioassay indicated trans-anethole in I. verum and menthone in S. tenuifolia as a major antifungal constituent. The essential oils of I. verum and S. tenuifolia and their major constituents could be used to manage post-harvest diseases caused by B. cinerea and C. gloeosporioides.

First Report of Diaporthe actinidiae, the Causal Organism of Stem-end Rot of Kiwifruit in Korea

  • Lee, Jae-Goon;Lee, Dong-Hyun;Park, Sook-Young;Hur, Jae-Seoun;Koh, Young-Jin
    • The Plant Pathology Journal
    • /
    • v.17 no.2
    • /
    • pp.110-113
    • /
    • 2001
  • Post-harvest diseases of kiwifruit caused severe damages on the fruits during storage, transportation, marketing and consumption. Phomopsis sp. was reported to be one of the major causal organisms of post-harvest fruit rots of kiwifruit. Symptoms of stem-end rot caused by Phomopsis sp. appeared at the stem-end area of the fruit as it ripened. The brown pubescent skin at the area became soft and lighter in color than the adjacent firm healthy tissues. A watery exudate and white mycelial mats were frequently visible at the stem-end area forming a water-drop stain down the sides on the dry brown healthy skin. When the skin was peeled back, the affected flesh tissue was usually watersoaked, disorganized, soft and lighter green than the healthy tissue. Phomopsis sp. was consistently isolated from the diseased fruits, and its pathogenicity was confirmed by an artificial inoculation test on healthy fruit of kiwifruits. The mycological characteristics of the telemorph state of the fungus produced on potato-dextrose agar were in accordance with those of Diaporthe actinidiae. This is the first report on the occurrence of a telemorph state of D. actinidiae as the causal organism of stem-end rot of kiwifruit in Korea.

  • PDF

Post-harvest Decay of 'Campbell Early' Grape (포도 '캠벨얼리'의 저장 중 발생하는 썩음병)

  • Noh, Young-Hee;Kim, Yong-Eon;Song, Min-Ji;An, Ji-Hye;Jeong, Min-Jung;Hong, Seung-Beom;Kim, Seon-Hwa;Lee, Hyok-In;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.275-282
    • /
    • 2014
  • The occurrence of post-harvest diseases and their pathogens in 'Campbell Early' which is the most produced grape in Korea was investigated. The 'Campbell Early' grapes produced in 3 main grape-producing areas were stored in a cold room ($0-4^{\circ}C$) for 2 weeks then at room temperature for 4 weeks prior to investigation. The major post-harvest diseases occurred were gray mold, blue mold, ripe rot, new decay 1, and new decay 2. Pathogens isolated from the symptoms were identified as Botrytis cinerea for gray mold, Penicillium sclerotiorum for blue mold and Collectrichum acutatum for ripe rot. Pathogens for new decay 1 and new decay 2 were not identified yet. Incidences of new decay 1 and new decay 2 were much higher than the other 3 decays in all grapes produced from 3 areas. Gray mold and blue mold occurred at much lower frequencies than these two decays, and ripe rot occurred least.

Occurrence and Decontamination of Mycotoxins in Swine Feed

  • Chaytor, Alexandra C.;Hansen, Jeff A.;Van Heugten, Eric;See, M. Todd;Kim, Sung-Woo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.5
    • /
    • pp.723-738
    • /
    • 2011
  • Contamination of agricultural crops by mycotoxins results in significant economic losses for grain producers and, when consumed, it can cause reduced growth and health in a wide range of animal species. Hundreds of mycotoxin producing molds exist, however each has a different frequency and pattern of occurrence, as well as differences in the severity of the diseases (mycotoxicoses) they cause. Among the mycotoxins considered to be major contaminates are aflatoxin, deoxynivalenol, fumonisin, ochratoxin, and zearalenone. Although a multitude of species can be harmed by consumption of these mycotoxins, swine appear to be the most commonly affected commodity species. The swine industry can thus experience great losses due to the presence of mycotoxin contamination in feeds. Subsequently, recognition and prevention of mycotoxicoses is extremely important and dependent on adequate grain sampling and analysis methods pre-harvest, as well as effective strategies post-harvest to reduce consumption by animals. The aim of this review is to provide an overview of the major mycotoxin contaminants in grains, to describe methods of analysis and prevention to reduce mycotoxicoses in swine and other animals, and finally to discuss how mycotoxins directly affect swine production.

Antifungal Activity of Green and Chemically Synthesized ZnO Nanoparticles against Alternaria citri, the Causal Agent Citrus Black Rot

  • Hazem S. Elshafie;Ali Osman;Mahmoud M El-Saber;Ippolito Camele ;Entsar Abbas
    • The Plant Pathology Journal
    • /
    • v.39 no.3
    • /
    • pp.265-274
    • /
    • 2023
  • Citrus black rot is a serious disease of citrus plants caused by Alternaria citri. The current study aimed to synthesize zinc oxide nanoparticles (ZnO-NPs) by chemically or green method and investigate their antifungal activity against A. citri. The sizes of synthesized as measured by transmission electron microscope of ZnO-NPs were 88 and 65 nm for chemical and green methods, respectively. The studied prepared ZnO-NPs were applied, in vitro and in situ, at different concentrations (500, 1,000, and 2,000 ㎍/ml) in post-harvest treatment on navel orange fruits to verify the possible control effect against A. citri. Results of in vitro assay demonstrated that, at concentration 2,000 ㎍/ml, the green ZnO-NPs was able to inhibit about 61% of the fungal growth followed by 52% of chemical ZnO-NPs. In addition, scanning electron microscopy of A. citri treated in vitro with green ZnO-NPs showed swelling and deformation of conidia. Results showed also that, using a chemically and green ZnO-NPs at 2,000 ㎍/ml in situ in post-harvest treatment of orange, artificially-infected with A. citri, has reduced the disease severity to 6.92% and 9.23%, respectively, compared to 23.84% of positive control (non-treated fruits) after 20 days of storage. The out findings of this study may contribute to the development of a natural, effective, and eco-friendly strategy for eradicating harmful phytopathogenic fungi.

Two Species of Penicillium Associated with Blue Mold of Yam in Korea

  • Kim, Won-Ki;Hwang, Yong-Soo;Yu, Seung-Hun
    • Mycobiology
    • /
    • v.36 no.4
    • /
    • pp.217-221
    • /
    • 2008
  • During 2007 survey of post-harvest diseases of yam performed in May and June, severe tuber loss caused by blue mold was observed in Iksan, Cheonbuk Province. Two species of Penicillium were isolated from the infected tubers. Based on $\beta$-tubulin gene sequence analysis, and cultural and morphological characteristics, the isolates were identified as Penicillium sclerotigenum and P. polonicum. P. sclerotigenum, which is a novel to Korea, is presently described and illustrated.

Identification of Bacteria Causing Rot Diseases of Vegetables in Fields and Post-harvest Period in Korea -3. Bacterial Rot Diseases of Radish (포장(圍場)과 수확후(收穫後)에 채소부패병(菜置腐敗病)을 일으키는 병원세균(病原細菌)의 동정(同定) -3. 무우의 세균성(細菌性) 부패병(腐敗病))

  • Choi, Jae Eul;Han, Kwang Seop;Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.2
    • /
    • pp.138-142
    • /
    • 1988
  • Fifty-eight root rot samples were collected from 30 main markets and radish-growing areas in Korea from which 34 isolates of pathogenic bacteria were obtained to identified causal bacteria of the disease. According to their bacteriological characteristics and pathogenicity, the majority of rot bacteria were identified as Erwinia carotovora subsp. carotovora and Pseudomonas marginalis pv. marginalis. Among these species, E. carotovora subsp. carotovora was found to cause serious damage to radish production throughout Korea. P. marginalis pv. marginalis is the first description of bacteria which cause the diseases in radish in Korea.

  • PDF

First Report of Sour Rot on Post-harvest Oriental Melon, Tomato, Cucumber, Potato, Pumpkin and Carrot Caused by Geotrichum candidum

  • Kim, Yong-Ki;Kim, Taek-Soo;Shim, Hong-Sik;Park, Kyung-Seok;Yeh, Wan-Hae;Hong, Sung-Jun;Shim, Chang-Ki;Kim, Jeong-Soon;Park, Jong-Ho;Han, Eun-Jung;Lee, Min-Ho;Jee, Hyeong-Jin
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.232-234
    • /
    • 2011
  • During survey of postharvest diseases of vegetables in the middle region of Korea in 2003, 2004 and 2005, new disease symptoms showing watery rot and soft rot were observed. In this study, the disease causal agents were identified as Geotrichum candidum, and their host range and pathogenicity were investigated. G. candidum isolated had wide host range and strong pathogenicity against carrot, cucumber, tomato and pumpkin. The disease occurrence on several vegetables that G. candidum can be a serious threat to stable production of fresh vegetable.

Broad-Spectrum Activity of Volatile Organic Compounds from Three Yeast-like Fungi of the Galactomyces Genus Against Diverse Plant Pathogens

  • Cai, Shu-Ting;Chiu, Ming-Chung;Chou, Jui-Yu
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.69-77
    • /
    • 2021
  • The application of antagonistic fungi for plant protection has attracted considerable interest because they may potentially replace the use of chemical pesticides. Antipathogenic activities confirmed in volatile organic compounds (VOCs) from microorganisms have potential to serve as biocontrol agents against pre- and post-harvest diseases. In the present study, we investigated Galactomyces fungi isolated from rotten leaves and the rhizosphere of cherry tomato (Lycopersicon esculentum var. cerasiforme). VOCs produced by Galactomyces fungi negatively affected the growth of phytopathogenic fungi and the survival of nematodes. Mycelial growths of all nine examined phytopathogenic fungi were inhibited on agar plate, although the inhibition was more intense in Athelia rolfsii JYC2163 and Cladosporium cladosporioides JYC2144 and relatively moderate in Fusarium sp. JYC2145. VOCs also efficiently suppressed the spore germination and mycelial growth of A. rolfsii JYC2163 on tomatoes. The soil nematode Caenorhabditis elegans exhibited higher mortality in 24 h in the presence of VOCs. These results suggest the broad-spectrum activity of Galactomyces fungi against various plant pathogens and the potential to use VOCs from Galactomyces as biocontrol agents.