• Title/Summary/Keyword: post-growth annealing

Search Result 70, Processing Time 0.028 seconds

Effect of Dopants on Cobalt Silicidation Behavior at Metal-oxide-semiconductor Field-effect Transistor Sidewall Spacer Edge

  • Kim, Jong-Chae;Kim, Yeong-Cheol;Kim, Byung-Kook
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.871-875
    • /
    • 2001
  • Cobalt silicidation at sidewall spacer edge of Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) with post annealing treatment for capacitor forming process has been investigated as a function of dopant species. Cobalt silicidation of nMOSFET with n-type Lightly Doped Drain (LDD) and pMOSFET with p-type LDD produces a well-developed cobalt silicide with its lateral growth underneath the sidewall spacer. In case of pMOSFET with n-type LDD, however, a void is formed at the sidewall spacer edge with no lateral growth of cobalt silicide. The void formation seems to be due to a retarded silicidation process at the LDD region during the first Rapid Thermal Annealing (RTA) for the reaction of Co with Si, resulting in cobalt mono silicide at the LDD region. The subsequent second RTA converts the cobalt monosilicide into cobalt disilicide with the consumption of Si atoms from the Si substrate, producing the void at the sidewall spacer edge in the Si region. The void formed at the sidewall spacer edge serves as a resistance in the current-voltage characteristics of the pMOSFET device.

  • PDF

Effect of Deposition and Annealing Temperature on Structural, Electrical and Optical Properties of Ag Doped ZnO Thin Films

  • Jeong, Eun-Kyung;Kim, In-Soo;Kim, Dae-Hyun;Choi, Se-Young
    • Korean Journal of Materials Research
    • /
    • v.18 no.2
    • /
    • pp.84-91
    • /
    • 2008
  • The effects of the deposition and annealing temperature on the structural, electrical and optical properties of Ag doped ZnO (ZnO : Ag) thin films were investigated. All of the films were deposited with a 2wt% $Ag_2O-doped$ ZnO target using an e-beam evaporator. The substrate temperature varied from room temperature (RT) to $250^{\circ}C$. An undoped ZnO thin film was also fabricated at $150^{\circ}C$ as a reference. The as-grown films were annealed in temperatures ranging from 350 to $650^{\circ}C$ for 5 h in air. The Ag content in the film decreased as the deposition and the post-annealing temperature increased due to the evaporation of the Ag in the film. During the annealing process, grain growth occurred, as confirmed from XRD and SEM results. The as-grown film deposited at RT showed n-type conduction; however, the films deposited at higher temperatures showed p-type conduction. The films fabricated at $150^{\circ}C$ revealed the highest hole concentration of $3.98{\times}1019\;cm^{-3}$ and a resistivity of $0.347\;{\Omega}{\cdot}cm$. The RT PL spectra of the as-grown ZnO : Ag films exhibited very weak emission intensity compared to undoped ZnO; moreover, the emission intensities became stronger as the annealing temperature increased with two main emission bands of near band-edge UV and defect-related green luminescence exhibited. The film deposited at $150^{\circ}C$ and annealed at $350^{\circ}C$ exhibited the lowest value of $I_{vis}/I_{uv}$ of 0.05.

Comparing the Passivation Quality of Ozone and H2O Oxidant of Atomic Layer Deposited Al2O3 by Post-annealing in N2 and Forming Gas Ambients for Passivated Emitter and Rear Cell (PERC)

  • Cho, Young Joon;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.462-462
    • /
    • 2014
  • The effect of rear passivation for passivated emitter and rear cell (PERC) using ozone and H2O oxidant of atomic layer deposited (ALD) Al2O3 was studied by post-annealing in N2 and forming gas ambients. Rear surface of PERC solar cell was passivated by Al2O3 grown by ALD with ozone and H2O oxidant. Al2O3 grown by ALD with ozone oxidant has been known to have many advantages, such as lower interface defects, low leakage current density. Its passivation quality is better than Al2O3 with H2O. Al2O3 layer with 10 nm and 20 nm thickness was grown at $150^{\circ}C$ with ozone oxidant and at $250^{\circ}C$ with H2O oxidant. And then each samples were post-annealled at $450^{\circ}C$ in N2 ambients and at $850^{\circ}C$ in forming gas ambients. The passivation quality was investigated by measuring the minority carrier lifetime respectively. We examined atomic layer deposited Al2O3 such as growth rate, film density, thickness, negative fixed charge density at AlOx/Si interface, and reflectance. The influences of process temperature and heat treatment were investigated using Sinton (WCT-120) by Quasi-Steady State Photoconductance (QSSPC) mode. Ozone-based ALD Al2O3 film shows the best carrier lifetime at lower deposition temperature than H2O-based ALD.

  • PDF

Texture in hot-pressed silicon carbide (고온가압소결한 탄화규소의 집합조직)

  • 김영욱;김원중
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.4
    • /
    • pp.343-350
    • /
    • 1995
  • A Abstract Systematic studies of the effects of crystalline forms of starting powders and p processing variables on the texture of hot - pressed silicon carbide are described. The results I indicate that hot - pressing of $\beta$ - SiC can produce strong textures and composite type duplex microstructure due to the ${\beta} {\rightarrow} {\alpha}$ phase transformation of SiC. The texture variations d during post - annealing have been observed. In the case of using a - SiC as starting pow¬d ders, the degree of preferred orientation by hot - pressing is relatively weak.

  • PDF

Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films (Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향)

  • Choe, Dong-Il;Yun, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

Spectroscopic analysis of near colorless/pink/blue synthetic diamonds from Lightbox ('라이트박스' 무색/핑크/블루 합성 다이아몬드의 분광학적 분석)

  • Choi, Hyunmin;Kim, Youngchool;Lee, Minkyoung;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • This article reports the result on the spectroscopic analysis of the three Lightbox CVD-grown diamonds. Lightbox Jewelry, a De Beers company, has begun selling CVD laboratory-grown diamonds since September 2018. Recently, we had the opportunity to examine three Lightbox's pendant necklaces. The 0.25 ct, 0.25 ct, and 0.26 ct round brilliant were graded as "H" near colorless, Fancy Vivid orangy pink, and Fancy Vivid blue with cut grades of excellent, respectively. The laser-inscribed Lightbox logo under the table, large enough to be easily visible with a microscope. Based on the spectroscopic techniques, for near colorless sample was not subjected to post-growth HPHT processing to improve its color. For pink sample, optical centers at H3, 3H, 594 nm, NV, and GR1 were recorded. It was speculated that the pink sample have been received irradiation and annealing. In addition, the blue CVD synthetic sample was concluded to be irradiated without annealing.

Growth of 3D TiO2 Nano-wall-like Structure with High Effective Surface Area (높은 유효 표면적을 갖는 3차원 TiO2 나노벽 유사구조의 성장)

  • Kim, Mee-Ree;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • Nano-materials with high effective surface areas have been applied to functional materials, such as high sensitive gas sensors and biosensors and high-efficiency catalytic materials. In this study, titanate sheets with a 3D nano-wall-like structure, high effective surface area, were synthesized vertically to the substrate by a chemical bath deposition (CBD) process using a Ti sheet and urea. The synthesis temperature and synthesis duration time were controlled to the optimal conditions of a 3D nano-wall-like structure in the CBD process. The synthesized ammonium titanate sheets with a 3D nano-wall-like structure were annealed in air to transform to TiO2 with a 3D nano-wall-like structure for various applications. As a result, the optimal temperature in the CBD process for the synthesis of a uniform ammonium titanate sheet with a 3D nano-wall-like structure was 90 ℃. TiO2 with a 3D nano-wall-like structure was obtained from the ammonium titanate sheet with a 3D nano-wall-like structure by annealing above 550 ℃ for three hours. In particular, TiO2 with a 3D nano-wall-like structure with a dominant rutile phase was obtained by post-annealing at 700 ℃. On the other hand, damage to the 3D nano-wall edge was observed after 700 ℃ post-annealing.

Effect of vacuum annealing and characterization of diecast ADC12 aluminum alloys (다이캐스팅 공정으로 제조한 ADC12 알루미늄 합금의 물성 향상 및 진공 열처리 효과)

  • Jo, Jihoon;Ham, Daseul;Oh, Seongchan;Cha, Su Yeon;Kang, Hyon Chol
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.1
    • /
    • pp.24-31
    • /
    • 2021
  • We report structural, mechanical, and thermal properties of diecast ADC12 aluminum alloys characterized using synchrotron X-ray diffraction (XRD), scanning electron microscopy, energy dispersive X-ray (EDX) analysis, thermal conductivity (λ), Vickers hardness (Hv), and stress-strain measurements. We also studied the effect of post-annealing performed in a vacuum atmosphere on the mechanical properties of diecast ADC12 alloys. EDX and XRD results revealed that Al2Cu and AlCu3 grains are formed, well dispersed in Al base and highly crystalline. Ultimate tensile strength (UTS) of 307.9 ± 9.1 MPa and elongation of 2.98 ± 0.62 % were estimated. λ was 129.3 ± 0.27 W/m·K and Hv was approximately 130. Both values were significantly higher than the reported values. At annealing temperatures ranging from 25 to 200℃, UTS and Hv values remained constant, while as the annealing temperature increased to 500℃, these values gradually decreased. This is because stabilization of the microstructure improves toughness and ductility.

Fabrication and Characterizations of ITO Film as a Transparent Conducting Electrode for PDP Application (PDP 투명전극의 응용을 위한 ITO 박막의 제작평가)

  • Park, Kang-Il;Lim, Dong-Gun;Kwak, Dong-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.788-791
    • /
    • 2002
  • Tin doped indium oxide(ITO) films are highly conductive and transparent in the visible region whose property leads to the applications in solar cell, liquid crystal display, thermal heater, and other sensors. This paper investigated ITO films as a transparent conducting films for application of PDP. ITO films were grown on glass substrate by RF magnetron sputtering method. To achieve high transmittance and low resistivity, we examined the various film deposition such as substrate temperature, gas pressure, annealing temperature, and deposition time. We recommend the substrate temperature of $500^{\circ}C$ and post annealing of $200^{\circ}C$ in $O_2$ atmosphere for good conductivity and transmittance. From XRD examination, ITO films showed a preferred(222) orientation. As substrate temperature increased from RT to $500^{\circ}C$, the intensity of the (222) peak increased. The highest peak intensity was observed at a substrate temperature of $500^{\circ}C$. with the optimum growth conditions, ITO films showed resistivity of $1.04{\times}10^{-4}{\Omega}-cm$ and transmittance of 81.2% for a film 300nm thick in the wavelength range of the visible spectrum.

  • PDF

Effect of Heat Treatment on the Microstructures and Properties of HVOF Sprayed Ni-Cr-W-Mo-B Alloy Coatings (초고속화염용사법으로 제조된 Ni-Cr-W-Mo-B 합금 코팅의 미세조직과 특성에 미치는 열처리 효과)

  • 민경오;이창희
    • Journal of Welding and Joining
    • /
    • v.18 no.6
    • /
    • pp.48-54
    • /
    • 2000
  • The corrosion properties of Ni-Cr-W-Mo-B alloy sprayed by the high velocity oxy-fuel spraying (HVOF) was studied as a function of heat treatment by using both potentiodynamic polarization and immersion tests in the H₂SO₄ solution. The mechanical property was also evaluated by a microhardness tester. Microstructural characteristics of te as-sprayed and annealed coatings at 550, 750 and 950℃ have been analyzed by means of OM, XRD, SEM and TEM. The results showed that the corrosion resistance was improved by increasing the annealing temperature. As-sprayed coating had metastable and heterogeneous phases such as amorphous, nanocrystalline and very refined grain and precipitates, which induced a localized corrosion. The localized corrosion occurred preferentially at the unmelted particles which were composed of Ni matrix and Cr, W and Mo riched phase segregated in the boundaries. As annealing temperature was increased, the microstructure had shown some changes - reduction of porosity and s[plat boundary decomposition and crystallization of amorphous/nanocrystalline phases, grain coarsening,, formation and growth of precipitates such as {TEX}$M_{23}C_{6}${/TEX} and {TEX}$M_{7}C_{3}${/TEX}. In addition, the compositional difference between matrix and boundary phases gradually disappeared, which changed the corrosion type from localized corrosion to general corrosion and thus enhanced corrosion resistance.

  • PDF