• Title/Summary/Keyword: post-combustion

Search Result 128, Processing Time 0.031 seconds

Measurement of Soot Nano-Particle Using LIIM(Laser-Induced Ion Mobility) (LIIM(Laser-Induced Ion Mobility) 계측을 이용한 매연 나노입자 측정)

  • Lee, Eui-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1110-1116
    • /
    • 2004
  • Experimental measurements of laser-induced ion mobility(LIIM) were performed for ethene/air premixed flames operated near the soot inception point. Soot was ionized using a pulsed laser operated at 532 nm. The ionization signal was collected with a tungsten electrode located in the post-flame region. ionization signals were collected using both a single electrode and dual electrode configuration. Prior LIIM studies have focused on the use of a single biased electrode to generate the electric field, with the burner head serving as the path to ground. In many practical combustion systems, a path to ground is not readily available. To apply the LIIM diagnostic to these geometries, a dual electrode geometry must be employed. The influence of electrode configuration, flame equivalence ratio, and flame height on ionization signal detection was determined. The efficacy of the LIIM diagnostic to detect soot inception in the post-flame region of a premixed flame using a dual electrode configuration was investigated. For the different dual electrode configurations tested, the dual parallel electrode geometry was observed to be most sensitive to detect the soot inception point in a premixed flame.

A Study on the Combustion Optimization of a Common Rail Direct Injection Diesel Engine for Regeneration of the Diesel Particulate Filter (매연여과장치 재생을 위한 커먼레일 디젤엔진의 연소 최적화에 관한 연구)

  • Kang Jung Whun;Kim Man Young;Youn Gum Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.167-173
    • /
    • 2005
  • Thermal regeneration means burning-off and cleaning-up the particulate matters piled up in DPF(diesel particulate filter), and it requires both high temperature $(550\~600^{\circ}C)$ and appropriate concentration of oxygen at DPF entrance. However, it is not easy to satisfy such conditions because of the low temperature window of the HSDI(high speed direct injection) diesel engine(approximately $200\~350^{\circ}C$ at cycle). Therefore, this study is focused on the method to raise temperature using the trade-off relation between temperature, oxygen concentration, and the influence of many parameters of common rail injection system including post injection. After performing an optimal mapping of the common rail parameters for regeneration mode, the actual cleaning process during regeneration mode is investigated and evaluated the availability of the regeneration mode mapping through regenerating soot trapped in the DPF.

Removal of Air Pollutants from Charcoal Production Process Exhaust (숯 제조공정에서 발생하는 대기오염물질의 제거기술)

  • Park, Seong-Kyu;Choi, Sang-Jin;Kim, Daekuen;Hwang, Ui-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.4
    • /
    • pp.350-361
    • /
    • 2014
  • Exhaust gas containing wood tar of high concentration is discharged from charcoal production kilns. The large amount of emissions are often found by operational failure. The purpose of this study is to investigate the performance of an integrated treatment system in treating charcoal production exhaust. The system, which combined a tar collection device and a post-combustion unit, was proposed to remove moisture, wood tar, particulate matter, and other gas-phase pollutants (CO, $CH_4$, total hydrogen carbons) from exhaust gases. Heat recovery units were also applied in the system to utilize waste heat.

Development of Low Pressure Carburizing and High Pressure Gas Quenching System (뺏치식 저압침탄 고압가스냉각 시스템 개발)

  • Jang, Byoung-Lok;Han, Hyoung-Ki;Kim, Won-Bae;Dong, Sang-Keun;Kim, Han-Suck;Cho, Han-Chang
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.78-84
    • /
    • 2005
  • The development of eco-friendly low pressure carburizing system with high pressure gas quenching (LPC_GQ, 500kg/charge) led to new stage in the fundamental case-hardening treatments. This is due to its ability to provide tighter tolerances on the carburizing process with notable reductions in distortion of the carburized and hardened workpiece. This system is characteristics by high uniformity and reproducibility of heat treatment results, absence of an intergranular oxidation layer, carburizing of complex shapes, reduced cycle time, low operating costs, simplified production, eliminate post washing, and reduced grinding costs.

  • PDF

Minimization of Energy Consumption for Amine Based CO2 Capture Process by Process Modification

  • Sultan, Haider;Bhatti, Umair H.;Cho, Jin Soo;Park, Sung Youl;Baek, Il Hyun;Nam, Sungchan
    • Journal of Energy Engineering
    • /
    • v.28 no.4
    • /
    • pp.13-18
    • /
    • 2019
  • The high energy penalty in amine-based post-combustion CO2 capture process is hampering its industrial scale application. An advanced process is designed by intensive heat integration within the conventional process to reduce the stripper duty. The study presents the technical feasibility for stripper duty reduction by intensive heat integration in CO2 capture process. A rigorous rate-based model has been used in Aspen Plus® to simulate conventional and advanced process for a 300 MW coal-based power plant. Several design and operational parameters like split ratio, stripper inter-heater location and flowrate were studied to find the optimum values. The results show that advanced configuration with heat integration can reduces the stripper heat by 14%.

Analysis of Energy and Material Balance in Smelting Process of Waste Sand (폐주물사의 용융공정에서의 물질 및 에너지 수지의 해석)

  • Chung, Won-Sub;Min, Dong-Jun;Yoon, Su-Jong
    • Journal of Korea Foundry Society
    • /
    • v.15 no.5
    • /
    • pp.477-482
    • /
    • 1995
  • A computer simulation model of various smelting process for melting waste sand was developed by using energy and material balance concept. This model can predict the coal, flux and oxygen consumption and the volume and temperature of off-gas. The major critical variables for smelting process can be explained by using the analysis of energy and material balance. The major conclusions were as follows; 1. The most important variables for smelting process were high post-combustion ratio, high heat transfer efficiency and refractory protection technology. 2. For saving energy in this smelting process, selection of raw materials i.e coal, flux are very important, espacially using of low volatile coal is very profitable. 3. The treatment cost of waste sand is high and environmental restriction is severe, in this reason we must be concerned in the treatment of waste sand by smelting process.

  • PDF

Substituent Effect in the Reaction of Carbon Dioxide with Amine-Based Absorbent (치환기 특성에 따른 아민흡수제와 CO2의 반응특성 평가)

  • Shim, Jae-Goo;Lee, Junghyun;Jung, Jin-Kyu;Kwak, No-Sang
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.297-303
    • /
    • 2020
  • The reaction of carbon dioxide with the amine-based absorbents which have various substituents in the molecule was described. In the case of MEA which is a representative primary amine, the absorption reaction was proceeded very fast while the regeneration reaction was took place slowly due to the strong bond strength between the absorbent and carbon dioxide. The more substituents on N atom of the absorbent, the slower the absorption reaction between carbon dioxide and the absorbent, which in turn causes faster the regeneration rate from the reaction intermediate, carbamate.

Numerical study on single nozzle performances for H class gas turbine based on CONVERGE CFD (H class급 가스터빈의 단일 노즐 성능에 대한 CONVERGE CFD 기반 수치 해석적 연구)

  • Kim, Jonghyun;Park, Jungsoo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.67-72
    • /
    • 2019
  • In this study, we investigate the non-reacting and reacting performance of single nozzle for post H class gas turbine by using commercial CFD tool, CONVERGE, based on adaptive mesh refinement. By varying swirl number and mixing length of base nozzle design. Through the numerical analysis, basic phenomena can be well described with respect to fuel concentration for non-reacting flow, temperature distribution, velocity vector and combustion outlet temperature distribution for reacting flow. However, there are rooms for improvements in model accuracy by comparing test results. Comparison between numerical analysis are planning for further study.

Vitrification of Simulated Combustible Dry Active Wastes in a Pilot Facility

  • Yang, Kyung-Hwa;Park, Seung-Chul;Lee, Kyung-Ho;Hwang, Tae-Won;Maeng, Sung-Jun;Shin, Sang-Woon
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.355-364
    • /
    • 2001
  • In order to evaluate and finally optimize the vitrification condition for combustible dry active waste (DAW), dust and gas generation characteristics were investigated for PE, cellulose, and mixed waste Tests were conducted by varying the operation variables such as melter configuration, excess oxygen amount, and waste feeding rate. Results showed that dust generation characteristics were affected by the operation parameters and the melter's configuration is the dominant one. For all tested DAWs, dust generation was reduced by increasing the waste feeding rate and the excessive oxygen amount in the melter. Among waste types, dust amount was decreased by the order of mixed wastes, PE, and cellulose. Other parameters such as temperature variation and operation time have also affected the dust generation. The optimum condition for the DAW vitrification was determined as the melter's configuration equipped for minimizing the waste dispersion with 20 kg/h of waste feeding rate and 100% of excessive oxygen supply. CO gas concentration in the off-gas was immediately influenced by the combustion state in the melter, but showed similar trend as the dust generation. For the NOx production during the vitrification process, thermal NOx, which is generated from the Post Combustion Chamber (PCC), rather than fuel NOx was assumed to be dominant. The gas cleaning of efficiencies of the PCC, wet scrubber, and Selective Catalytic Reduction system (SCR) were found to be high enough to keep the concentration of pollutants (CO, NOx, SOx, HCI) in the stack below their relevant emission limits.

  • PDF

Combustion Characteristics and the Modeling of Ionized Methane for Battery Fires (배터리화재를 모사한 이온화 메탄의 연소특성 및 모델링)

  • Ko, Hyuk-Ju;Lee, Eui-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • Rechargeable battery such as lithium-ion battery has been noticed as a kinds of the energy storage system in the recent energy utilization and widely used actually in various small electronic equipment and electric vehicles. However, many thermal runaway caused battery accidents occurred recently, which still is obstacle for advanced application of lithium ion battery. One of the main differences to general fires is the existence of ionized electrolyte with electron during combustion. Therefore, we simply simulated the ion addition effects of battery fires by introducing an ionized fuel in jet diffusion flames. When the ionized methane through a corona discharge was used as fuel, the overall flame stability and shape such as flame length showed no significant difference from normal methane flame, but NOx and CO emissions measured at the post flame region decreased. The ion addition effect of methane oxidation was also numerically simulated with the modeling of hydrogen addition in the mixture. It was confirmed that the hydrogen addition at a fixed temperature had a similar effects on ionization of methane and hence could be modeled successfully.