• Title/Summary/Keyword: post-breeding

Search Result 155, Processing Time 0.023 seconds

Differences in liver microRNA profiling in pigs with low and high feed efficiency

  • Miao, Yuanxin;Fu, Chuanke;Liao, Mingxing;Fang, Fang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.312-329
    • /
    • 2022
  • Feed cost is the main factor affecting the economic benefits of pig industry. Improving the feed efficiency (FE) can reduce the feed cost and improve the economic benefits of pig breeding enterprises. Liver is a complex metabolic organ which affects the distribution of nutrients and regulates the efficiency of energy conversion from nutrients to muscle or fat, thereby affecting feed efficiency. MicroRNAs (miRNAs) are small non-coding RNAs that can regulate feed efficiency through the modulation of gene expression at the post-transcriptional level. In this study, we analyzed miRNA profiling of liver tissues in High-FE and Low-FE pigs for the purpose of identifying key miRNAs related to feed efficiency. A total 212~221 annotated porcine miRNAs and 136~281 novel miRNAs were identified in the pig liver. Among them, 188 annotated miRNAs were co-expressed in High-FE and Low-FE pigs. The 14 miRNAs were significantly differentially expressed (DE) in the livers of high-FE pigs and low-FE pigs, of which 5 were downregulated and 9 were upregulated. Kyoto Encyclopedia of Genes and Genomes analysis of liver DE miRNAs in high-FE pigs and low-FE pigs indicated that the target genes of DE miRNAs were significantly enriched in insulin signaling pathway, Gonadotropin-releasing hormone signaling pathway, and mammalian target of rapamycin signaling pathway. To verify the reliability of sequencing results, 5 DE miRNAs were randomly selected for quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The qRT-PCR results of miRNAs were confirmed to be consistent with sequencing data. DE miRNA data indicated that liver-specific miRNAs synergistically acted with mRNAs to improve feed efficiency. The liver miRNAs expression analysis revealed the metabolic pathways by which the liver miRNAs regulate pig feed efficiency.

Reproductive management of dairy cows: an existing scenario from urban farming system in Bangladesh

  • Nayeema Khan Sima;Munni Akter;M. Nazmul Hoque;Md. Taimur Islam;Ziban Chandra Das;Anup Kumar Talukder
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.38 no.4
    • /
    • pp.215-224
    • /
    • 2023
  • Background: Reproductive management practices play crucial roles to maximize the reproductive performance of cows, and thus contribute to farm profitability. We aimed to assess the reproductive management of cows currently practiced in the dairy farms in an urban farming system. Methods: A total of 62 dairy farms were randomly selected considering all size of farms such as small (1-5 cattle), medium (6-20 cattle) and large farms (> 20 cattle) from selected areas of Dhaka city in Bangladesh. The reproductive management-related parameters viz. estrus detection, breeding method, pregnancy diagnosis, dry cow and parturition management, vaccination and treatment of reproductive problems etc. were obtained in a pre-defined questionnaire during the farm visit. Results: The visual observation method was only used (100.0%; 62/62) for estrus detection irrespective of size of the farms; while farmers observed cows for estrus 4-5 times a day, but only for 20-60 seconds each time. Regardless of farm size, 89.0% (55/62) farms used artificial insemination (AI) for breeding the cows. Intriguingly, all farms (100.0%) routinely checked the cows for pregnancy at 35-40 days post-breeding using rectal palpation technique by registered veterinarian. However, only 6.5% (4/62) farms practiced dry cow management. Notably, all farms (100.0%) provided nutritional supplements (Vit D, Ca and P) during late gestation. However, proper hygiene and cleanliness during parturition was not practiced in 77.4% (48/62) farms; even though 96.7% (60/62) farms treated cows by registered veterinarian for parturition-related problems. Conclusions: While farmers used AI service for breeding and timely check their cows for pregnancy; however, they need to increase observation time (30 minutes/ observation, twice in a day: early morning and early night) for estrus detection, consider dry cow management and ensure hygienic parturition for maximizing production.

Quantitative Variation of Total Seed Isoflavone and its Compositions in Korean Soybean Cultivars (Glycine max (L.) Merr.)

  • Kim, Hong-Sik;Kang, Beom-Kyu;Seo, Jeong-Hyun;Ha, Tae-Joung;Kim, Hyun-Tae;Shin, Sang-Ouk;Park, Chang-Hwan;Kwak, Do-Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.89-101
    • /
    • 2019
  • The variation of content of 12 soybean seed isoflavone components was determined in the aglycone, glucoside, malonylglucoside and acetylglucoside groups of 44 Korean soybean cultivars grown in 2016 as well as in 2017. The total isoflavone content of the 44 cultivars averaged at $2935.4{\mu}g/g$ and was in the range of 950.6 to $5226.3{\mu}g/g$ for two years. Malonylglucoside group averaged at $2437.2{\mu}g/g$ with the highest proportion of isoflavone composition (83.0%). Significant differences were observed between cultivars, years and their interactions for both the total isoflavone and each composition group contents (P < 0.0001); however, no year-wise differences were observed for daidzein and genistin. The broad-sense heritability ($h^2$) within the set of 44 Korean soybean cultivars was as high as 0.93 for the total isoflavone content and was in the range of 0.8-0.92 for each composition group of isoflavone except for acetylglucoside. The total isoflavone content in cultivar group for soy-sprout was higher ($3850.4{\mu}g/g$) than that for the other cultivar groups of soy-paste and tofu ($3082.8{\mu}g/g$), black or green soybean cooked with rice ($2345.8{\mu}g/g$), and early maturity group ($1298.6{\mu}g/g$). The total isoflavone content of 'Sowonkong', a soybean cultivar for soy-sprout, was the highest ($5226.3{\mu}g/g$). In the cultivar group for soy-paste and tofu, the average isoflavone contents of 'Daepung', 'Daepung2ho', 'Saegeum', 'Uram', and 'Jinpung' were higher than $4000{\mu}g/g$. With the exception of small seeded cultivars with low isoflavone contents such as 'Sohwang' and 'Socheongja', the seed size and total isoflavone content were significantly negatively correlated in 2016 and 2017, respectively ($r=-0.47^{**}$ and $-0.49^{**}$). The number of days of growth from flowering to maturity did not affect the variations observed in isoflavone content.

Comparison of miR-106b, miR-191, and miR-30d expression dynamics in milk with regard to its composition in Holstein and Ayrshire cows

  • Marina V. Pozovnikova;Viktoria B. Leibova;Olga V. Tulinova;Elena A. Romanova;Artem P. Dysin;Natalia V. Dementieva;Anastasiia I. Azovtseva;Sergey E. Sedykh
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.965-981
    • /
    • 2024
  • Objective: Milk composition varies considerably and depends on paratypical, genetic, and epigenetic factors. MiRNAs belong to the class of small non-coding RNAs; they are one of the key tools of epigenetic control because of their ability to regulate gene expression at the post-transcriptional level. We compared the relative expression levels of miR-106b, miR-191, and miR-30d in milk to demonstrate the relationship between the content of these miRNAs with protein and fat components of milk in Holstein and Ayrshire cattle. Methods: Milk fat, protein, and casein contents were determined in the obtained samples, as well as the content of the main fatty acids (g/100 g milk), including: saturated acids, such as myristic (C14:0), palmitic (C16:0), and stearic (C18:0) acids; monounsaturated acids, including oleic (C18:1) acid; as well as long-, medium- and short-chain, polyunsaturated, and trans fatty acids. Real-time stem-loop one-tube reverse transcription polymerase chain reaction with TaqMan probes was used to measure the miRNA expression levels. Results: The miRNA expression levels in milk samples were found to be decreased in the first two months in Holstein breed, and in the first four months in Ayrshire breed. Correlation analysis did not reveal any dependence between changes in the expression level of miRNA and milk fat content, but showed a multidirectional relationship with individual milk fatty acids. Positive associations between the expression levels of miR-106b and miR-30d and protein and casein content were found in the Ayrshire breed. Receiver operating characteristic curve analysis showed that miR-106b and miR-30d expression levels can cause changes in fatty acid and protein composition of milk in Ayrshire cows, whereas miR-106b expression level determines the fatty acid composition in Holsteins. Conclusion: The data obtained in this study showed that miR-106b, miR-191, and miR-30d expression levels in milk samples have peculiarities associated with breed affiliation and the lactation period.

Assessment of pregnancy-associated glycoprotein profile in milk for early pregnancy diagnosis in goats

  • Singh, Shiva Pratap;Natesan, Ramachandran;Sharma, Nandini;Goel, Anil Kumar;Singh, Manoj Kumar;Kharche, Suresh Dinkar
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.26-35
    • /
    • 2021
  • Objective: This study was conducted to assess the level of pregnancy-associated glycoprotein (PAG) in whole and skim milk samples, and its suitability for early pregnancy diagnosis in goats. Methods: A two-step sandwich enzyme-linked immunosorbent assay (ELISA) system for estimation of milk PAG was developed and validated, which employed caprine-PAG specific polyclonal antisera. Whole and skim milk samples (n = 210 each) from fifteen multiparous goats were collected on alternate days from d 10 to d 30, and thereafter weekly till d 51 post-mating. PAG levels in milk samples were estimated by ELISA and the pregnancies were confirmed at d40 post-mating by transrectal ultrasonography (TRUS). Results: The level of PAG in whole and skim milk samples of both pregnant and nonpregnant goats remained below the threshold values until d 24 after mating. Thereafter, PAG concentration in whole and skim milk increased steadily in pregnant goats, whereas it continued below the threshold in non-pregnant does. The PAG profiles in whole and skim milk of pregnant goats were almost similar and exhibited strong positive relationship (r = 0.891; p<0.001). Day 26 post-mating was identified as the first time-point for significantly (p<0.05) higher milk PAG concentration in pregnant goats than to non-pregnant goats. When compared to TRUS examination for pregnancy diagnosis, the accuracy and specificity of PAG ELISA using whole and skim milk samples were 94.5% and 95.4%; and 95.3% and 100%, respectively. The high values of area-under-curve (0.904 [whole milk] and 0.922 [skim milk]), demonstrate outstanding discrimination ability of the milk assays. Among the sampling dates chosen, d 37 post-mating was identified as the best suitable time point for collection of milk samples to detect pregnancy in goats. Conclusion: The PAG concentration in whole and skim milk of goats collected between days 26 and 51 post-breeding can be used for the accurate prediction of pregnancy and may be useful for assisting management decisions in goat flocks.

Relationship between porcine miR-20a and its putative target low-density lipoprotein receptor based on dual luciferase reporter gene assays

  • Ding, Yueyun;Zhu, Shujiao;Wu, Chaodong;Qian, Li;Li, DengTao;Wang, Li;Wan, Yuanlang;Zhang, Wei;Yang, Min;Ding, Jian;Wu, Xudong;Zhang, Xiaodong;Gao, Yafei;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.922-929
    • /
    • 2019
  • Objective: Mutations in low-density lipoprotein receptor (LDLR), which encodes a critical protein for cholesterol homeostasis and lipid metabolism in mammals, are involved in cardiometabolic diseases, such as familial hypercholesterolemia in pigs. Whereas microRNAs (miRNAs) can control LDLR regulation, their involvement in circulating cholesterol and lipid levels with respect to cardiometabolic diseases in pigs is unclear. We aimed to identify and analyze LDLR as a potential target gene of SSC-miR-20a. Methods: Bioinformatic analysis predicted that porcine LDLR is a target of SSC-miR-20a. Wild-type and mutant LDLR 3'-untranslated region (UTR) fragments were generated by polymerase chain reaction (PCR) and cloned into the pGL3-Control vector to construct pGL3 Control LDLR wild-3'-UTR and pGL3 Control LDLR mutant-3'-UTR recombinant plasmids, respectively. An miR-20a expression plasmid was constructed by inserting the porcine premiR-20a-coding sequence between the HindIII and BamHI sites in pMR-mCherry, and constructs were confirmed by sequencing. HEK293T cells were co-transfected with the miR-20a expression or pMR-mCherry control plasmids and constructs harboring the corresponding 3'-UTR, and relative luciferase activity was determined. The relative expression levels of miR-20a and LDLR mRNA and their correlation in terms of expression levels in porcine liver tissue were analyzed using reverse-transcription quantitative PCR. Results: Gel electrophoresis and sequencing showed that target gene fragments were successfully cloned, and the three recombinant vectors were successfully constructed. Compared to pMR-mCherry, the miR-20a expression vector significantly inhibited wild-type LDLR3'-UTR-driven (p<0.01), but not mutant LDLR-3'-UTR-driven (p>0.05), luciferase reporter activity. Further, miR-20a and LDLR were expressed at relatively high levels in porcine liver tissues. Pearson correlation analysis revealed that porcine liver miR-20a and LDLR levels were significantly negatively correlated (r = -0.656, p<0.05). Conclusion: LDLR is a potential target of miR-20a, which might directly bind the LDLR 3'-UTR to post-transcriptionally inhibit expression. These results have implications in understanding the pathogenesis and progression of porcine cardiovascular diseases.

Ruminal pH pattern, fermentation characteristics and related bacteria in response to dietary live yeast (Saccharomyces cerevisiae) supplementation in beef cattle

  • Zhang, Xiangfei;Dong, Xianwen;Wanapat, Metha;Shah, Ali Mujtaba;Luo, Xiaolin;Peng, Quanhui;Kang, Kun;Hu, Rui;Guan, Jiuqiang;Wang, Zhisheng
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.184-195
    • /
    • 2022
  • Objective: In this study we aimed to evaluate the effect of dietary live yeast supplementation on ruminal pH pattern, fermentation characteristics and associated bacteria in beef cattle. Methods: This work comprised of in vitro and in vivo experiments. In vitro fermentation was conducted by incubating 0%, 0.05%, 0.075%, 0.1%, 0.125%, and 0.15% active dried yeast (Saccharomyces cerevisiae, ADY) with total mixed ration substrate to determine its dose effect. According to in vitro results, 0.1% ADY inclusion level was assigned in in vivo study for continuously monitoring ruminal fermentation characteristics and microbes. Six ruminally cannulated steers were randomly assigned to 2 treatments (Control and ADY supplementation) as two-period crossover design (30-day). Blood samples were harvested before-feeding and rumen fluid was sampled at 0, 3, 6, 9, and 12 h post-feeding on 30 d. Results: After 24 h in vitro fermentation, pH and gas production were increased at 0.1% ADY where ammonia nitrogen and microbial crude protein also displayed lowest and peak values, respectively. Acetate, butyrate and total volatile fatty acids concentrations heightened with increasing ADY doses and plateaued at high levels, while acetate to propionate ratio was decreased accordingly. In in vivo study, ruminal pH was increased with ADY supplementation that also elevated acetate and propionate. Conversely, ADY reduced lactate level by dampening Streptococcus bovis and inducing greater Selenomonas ruminantium and Megasphaera elsdenii populations involved in lactate utilization. The serum urea nitrogen decreased, whereas glucose, albumin and total protein concentrations were increased with ADY supplementation. Conclusion: The results demonstrated dietary ADY improved ruminal fermentation dose-dependently. The ruminal lactate reduction through modification of lactate metabolic bacteria could be an important reason for rumen pH stabilization induced by ADY. ADY supplementation offered a complementary probiotics strategy in improving gluconeogenesis and nitrogen metabolism of beef cattle, potentially resulted from optimized rumen pH and fermentation.

Alfalfa xenomiR-162 targets G protein subunit gamma 11 to regulate milk protein synthesis in bovine mammary epithelial cells

  • Guizhi Meng;Hongjuan Duan;Jingying Jia;Baobao Liu;Yun Ma;Xiaoyan Cai
    • Animal Bioscience
    • /
    • v.37 no.3
    • /
    • pp.509-521
    • /
    • 2024
  • Objective: It was shown that microRNAs (miRNAs) play an important role in milk protein synthesis. However, the post-transcriptional regulation of casein expression by exogenous miRNA (xeno-miRNAs) in ruminants remains unclear. This study explores the regulatory roles of alfalfa xeno-miR162 on casein synthesis in bovine mammary epithelial cells (bMECs). Methods: The effects of alfalfa xenomiR-162 and G protein subunit gamma 11 (GNG11) on proliferation and milk protein metabolism of bMECs were detected by 5-Ethynyl-2'-Deoxyuridine (EdU) staining, flow cytometry, cell counting kit-8 (CCK-8), enzyme-linked immunosorbent assay, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blot. Dual-luciferase reporter assay was used to verify the targeting relationship between GNG11 and xenomiR-162. Results: Results showed that over-expression of xenomiR-162 inhibited cell proliferation but promoted apoptosis, which also up-regulated the expression of several casein coding genes, including CSN1S1, CSN1S2, and CSN3, while decreasing the expression of CSN2. Furthermore, the targeting relationship between GNG11 and xenomiR-162 was determined, and it was confirmed that GNG11 silencing also inhibited cell proliferation but promoted apoptosis and reduced the expression of casein coding genes and genes related to the mammalian target of rapamycin (mTOR) pathway. Conclusion: Alfalfa xenomiR-162 appears to regulate bMECs proliferation and milk protein synthesis via GNG11 in the mTOR pathway, suggesting that this xeno-miRNA could be harnessed to modulate CSN3 expression in dairy cows, and increase κ-casein contents in milk.

Consumer Acceptance of Three Rice Varieties Formulated by a Simplex-Lattice Mixture Design

  • Choi, In-Duck;Son, Jong-Rok;Hong, Ha-Cheol;Kim, Kee-Jong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.1
    • /
    • pp.78-83
    • /
    • 2006
  • A simplex-lattice mixture design was applied to blend three varieties of rice; Ilpum (IP), Goami2 (G2) and Baegjinju (BJJ) all of which have very different physicochemical properties from one another. G2 and BJJ are mutant rice developed from IP. Increasing G2 portions in a rice blend increases indigestible carbohydrate contents. Blending at least 33.3% of G2 to either IP or BJJ increased indigestible carbohydrates, which were approximately $3.55{\pm}1.31\;to\;4.57{\pm}0.37$(g/100 g), respectively. Consumers rated higher than 6.0 (=like slightly) for the IP alone and binary blends of IP and BJJ, whereas less than 5.0 (=dislike moderately) for the blends containing G2 rice, indicating that consumers would not accept rice blends containing higher G2 portions. However, although blends with G2 were given lower consumer ratings, a rice blend with G2 could have health benefits in terms of nutritional and functional properties due to the higher indigestible carbohydrate contents.

Changes in Habitat Use by Female Japanese Pipistrelles (Pipistrellus abramus) during Different Stages of Reproduction Revealed by Radio Telemetry

  • Chung, Chul Un;Kim, Sung Chul;Jeon, Young Shin;Han, Sang Hoon
    • Journal of Environmental Science International
    • /
    • v.26 no.7
    • /
    • pp.817-826
    • /
    • 2017
  • We analyzed how foraging area use changed in female Pipistrellus abramus during the breeding season. Radio tracking was used to follow 12 female P. abramus in Gyeongju City, from 2013 to 2015. We followed three bats in each of four stages of reproduction: early pregnancy, late pregnancy, lactation, and post-lactation. Our data showed that the usable area of a foraging site and the area that was actually used by bats in that site were different, and foraging site use also differed according to stage of reproduction. The bats used arable land the most, with use rates of 57%, 40.4%, and 73.2% during early pregnancy, late pregnancy, and lactation, respectively. Bats in a post-lactation state did not use arable areas at all and instead foraged over bodies of water 90% of the time. There was no difference in the use of each foraging environment between bats in early pregnancy and late pregnancy. However, bats in late pregnancy and those that were lactating did use arable land to different extents, and bats that were lactating and those that were post-lactation also used arable land and bodies of water to different extents.