• Title/Summary/Keyword: post tensioned slab

Search Result 51, Processing Time 0.022 seconds

New Approach to Integrated Structural Analysis and Design for Multistory RC/Post-Tensioned Buildings (ADAPT Edge 2012-RC/PT 다층 구조물 해석 및 설계 프로그램)

  • Aalami, Florian;Lee, Soo Heon
    • Computational Structural Engineering
    • /
    • v.25 no.4
    • /
    • pp.63-70
    • /
    • 2012
  • This article introduces ADAPT Corporation's latest software product for the integrated multistory analysis and design of concrete buildings, ADAPT Edge. Edge uniquely packages user-friendly modeling of multistory buildings, accurate gravity and lateral analysis, post-tensioning, and detailed slab and beam design, all in one software package. The benefits of Edge over traditional concrete design software are explained.

Strength of Interior Post-Tensioned Flat Plate Slab-Column Connection based on Failure Mechanism (파괴 메커니즘을 고려한 내부 포스트텐션 플랫 플레이트 슬래브-기둥 접합부의 강도식 평가)

  • Kim, Min-Nam;Ha, Sang-Su;Lee, Li-Hyung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.126-129
    • /
    • 2006
  • A bending moment $M_u$ transferred at slab-column connection is resisted at the slab critical section by flexure and shear. The ACI 318-05 Building Code(1) gives an empirical equation for the fraction ${\gamma}_{\upsilon}$ of the moment $M_u$ to be transferred by shear at the slab critical section at d/2 from the column face and also the effective wide(c+3h). The equation is based on tests of interior slab-column connections without shear reinforcement. In order to investigate the data eight test specimens were examined. The test shows that increased slab load substantially reduces both the unbalanced moment capacity and the lateral drift capacity of the connection. Especially, the specimens with the bottom reinforcement existence and nonexistence, appears remarkable differences. Studies also show that the code equation for ${\gamma}_{\upsilon}$ does not apply to all cases. The purpose of this study is to compare the test results with present ACI 318-05 Building Code provisions for design of slab-column connections and with the analysis of the experimental data for a new limitation of strength equation without shear reinforcement and bottom reinforcement.

  • PDF

An Experimental Study on the Flexural Cracking Behavior of Partially Prestressed Concrete Slabs (부분 프리스트레스트 콘크리트 슬래브의 휨 균열 거동에 관한 실험적 연구)

  • 박홍용;연준희;최익창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.108-115
    • /
    • 1990
  • This paper contains experimental studies on the flexural cracking behabior of PPC one-way slabs. Three post tensioned bonded PPC slabs with the same prestressing ratio and ultimate moment strength were tested. Based upon test results, this paper also presents the crack width prediction formula PPC slab. According to the crack theory developed mainly in Europe, crack width formula is given as the product of crack spacing and mean steel strain after decompression. Aaaaverage crack spacing formula is composed of many factors mainly such as concrete cover, concrete effective area in tension, sum of reinforcing bars perimeters and mixed reinforcements. In particular, it is very important to specify the bond characteristics of mixed reinforcements, since bond characteristics of PC bars are different from those of non-tensioned deformed bars. For this reason, a reduced bond coefficients for PS bars is employed in this study.

  • PDF

Seismic Behaviour of Exterior Joints in Post-Tensioned Flat Plate Systems (포스트 텐션 플랫 플레이트 외부 접합부의 내진 거동)

  • Han, Sang-Whan;Kee, Seong-Hoon;Kang, Tomas H.K.;Cho, Jong;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.5 s.95
    • /
    • pp.595-602
    • /
    • 2006
  • An experimental study was conducted to investigate seismic behaviour of post-tensioned(PT) exterior slab-column connections used for the purpose to resist gravity loads only. For these, 2/3-scale, two PT post-tensioned exterior connections with two different tendon arrangement patterns and one conventional reinforced concrete(RC) exterior connection was tested under quasi-static, uni-directional reversed cyclic loading. During the lateral testing, gravity forces transferred to the column were kept constant to closely simulate a moment to shear ratio of a real building. One of the objectives of this study was to assess the necessity and/or the quantity of bottom bonded reinforcement needed to resist moment reversal which would occur under significant inelastic deformations of the adjacent lateral force resisting systems. The ACI 318 and 352 provisions for structural integrity were applied to provide the bottom reinforcement passing through the column for the specimens. Prior test results were also collected to conduct comparative studies for some design parameters such as the tendon arrangement pattern, the effect of post-tensioning forces and the use of bottom bonded reinforcement. Consequently, the impact of tendon arrangement on the seismic performance of the PT connection, that is lateral drift capacity and ductility, dissipated energy and failure mechanism, was considerable. Moreover, test results showed that the amount of bottom reinforcement specified by ACI 352. 1R-89 was sufficient for resisting positive moments arising from moment reversal under reversed cyclic loads. Shear strength of the tested specimens was more accurately predicted by the shear strength equation(ACI 318) considering the average compressive stress over the concrete($f_{pc}$) due to post-tensioning forces than that without considering $f_{pc}$.

Analytical study of composite steel-concrete beams with external prestressing

  • Turini, Thiago T.;Calenzani, Adenilcia F.G.
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.595-609
    • /
    • 2022
  • Prestressed composite steel-concrete beams are still a technology restricted to repair sites of large-scale structures and spans. One of the reasons for that is the absence of standard frameworks and publications regarding their design and implementation. In addition, the primary normative codes do not address this subject directly, which might be related to a scarcity of papers indicating methods of design that would align the two technics, composite beams and external prestressing. In this context, this paper proposes methods to analyze the sizing of prestressed composite beams submitted to pre-tension and post-tension with a straight or polynomial layout cable. This inquiry inspected a hundred and twenty models of prestressed composite beams according to its prestressing technology and the eccentricity and value of the prestressing force. The evaluation also included the ratio between span and height of the steel profile, thickness and typology of the concrete slab, and layout of the prestressing cables. As for the results, it was observed that the eccentricity of the prestressing force doesn't significantly influence the bending resistance. In prestressed composite beams subjected to a sagging moment, the ratio L/d can reach 35 and 30 for steel-concrete composite slabs and solid concrete slabs, respectively. Considering the negative bending moment resistance, the value of the L/d ratio must be less than or equal to 25, regardless of the type of slab. When it comes to the value of the prestressing force, a variation greater than 10% causes a 2.6% increase in the positive bending moment resistance and a 4% decrease in the negative bending moment resistance. The pre-tensioned composite beams showed a superior response to flexural-compression and excessive compression limit states than the post-tensioned ones.

Deflection Analysis of Long Span Structures Using Under-Tension System (언더텐션 시스템을 이용한 장스팬 구조의 처짐 거동 해석)

  • Park, Duk-Kun;Lee, Jin;Ham, Su-Yun;Ahn, Nam-Shik;Lee, Ki-Hak;Lee, Jae-Hong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.66-69
    • /
    • 2008
  • This study presents deflection analysis of long span structures for pedestrian bridge on crossroads. For long span structures, the size of structural members should be determined considering the esthetic view and vehicle below the structures. As a result, the slenderness ratio of members is increased and the structure may be suffered from significant deflection. The under-tensioned system on lower part of the structure, is applied in order to reduce the deflection and the size of members. In this regard, the under-tensioned system enables the load of upper parts to carη to the end of beam by means of tensional force in cable. In addition, effectiveness of under-tensioned system can be different depending on the size of cable, the number and spacing of posts. This study is performed with conforming the effect by analytical various parameters (size of cable, number and spacing of post). Dead and live loads is supposed to apply in the slab, and the analytical result by MIDAS program are presented addressing the effect of the under-tensioned system.

  • PDF

An Experimental Study on Comparison of Structural Behavior of PT Flat Plate and RC Flat Plate Interior Connections (PT 플랫 플레이트와 RC 플랫 플레이트 내부 접합부의 구조적 거동 비교에 관한 실험적 연구)

  • Lee Dong Keun;Ha Sang-Su;Han Sang Whan;Lee Li Ryung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.111-114
    • /
    • 2005
  • While the existing reinforced concrete flat plate(RC flat plate) has a lot of advantages including reduced building height, it has some weak points such as many steel bars and the brittle rupture by punching shear. Compared with the RC flat plate, the post-tensioned flat plate (PT flat plate) has not only the same merits, but it also makes longer span possible and induces slab-column connections to be failed with the ductile behavior rather than with the brittle behavior by means of post-tensioning. However, it is difficult to define the joint behavior of PT flat plate under vertical and lateral loads since there are limit experimental results. For this reason, the experimental study is undertaken to investigate the comparison of behavior of PT flat plate and RC flat plate, and how flat plate(Gravity Load Resisting System) is displaced as lateral loads, like the wind and the earthquake, are occur. The result of this experiment shows that PT flat plate is generally superior to RC flat plate in terms of controlling crack, postponing stiffness deterioration, energy dissipation, etc.

  • PDF

Generalized Analysis of RC and PT Flat Plates Using Limit State Model (한계상태모델을 이용한 철근콘크리트와 포스트텐션 무량판의 통합해석)

  • Kang, Thomas H.K.;Rha, Chang-Soon
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.599-609
    • /
    • 2009
  • This paper discusses generalized modeling schemes for both reinforced concrete (RC) and post-tensioned (PT) flat plate buildings. In this modeling approach, nonlinear behavior due to slab flexure, moment and shear transfer at slab-column connections, and punching shear was included along with linear secant stiffness of each member or connection that accounts for concrete cracking. This generalized model was capable of simulating all different scenarios of slab-column connection failures such as brittle punching, flexure-shear interactive failure, and flexural failure followed by drift-induced punching. Furthermore, automatic detection of drift-induced punching shear and subsequent backbone curve modifications were realistically modelled by incorporating the limit state model, in which gravity shear versus drift capacity relations were adopted. The validation of the model was conducted using one-third scale two-story by two-bay RC and PT flat plate frames. The comparisons revealed that the model was robust and effective.

A Study on the Applicability of Partial Post-Tension Slab with Top Anchorage System (상향긴장식 부분PT를 사용한 슬래브의 적용성 분석)

  • Lee, Deuck-Hang;Kim, Kang-Su;Kim, Chang-Hyuk;Kim, Sang-Sik;Kim, Yong-Nam;Chung, Kwang-Ryang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.309-312
    • /
    • 2008
  • Reinforced concrete (RC) structures have been most widely used because of the economic efficiency. However, it is very weak to tensile stresses and difficult to control deflection due to the heavy self-weight of concrete. Although it is generally known that prestressed concrete structures can be the most effective to overcome the demerit of RC structures, its application is very seldom in domestic construction for the difficult onsite circumstances. The post-tension method, which is well fit for buildings that are mostly indeterminate structures and beneficial for monolithic construction, has been introduced to just a few building construction. The application of full PT method into entire spans makes construction engineers feel very difficult due to the lack of current condition in construction fields. Therefore, this study proposed the partially applied PT method as an alternative, which can improve the deflection control of RC structures and reduce the construction difficulty by applying the PT method in a part of span length as needed, and analyzed its characteristics of structural behavior. In this study, the top anchorage was applied to improve the applicability of partial PT method, and the analysis results of slab behavior were compared to the measured values obtained from the post-tensioned slab constructed by the partial PT method.

  • PDF

Load Transfer Test for Re-tensioning Post-Tension Kit for Prestressed Concrete (프리스트레스트 콘크리트 부재용 재긴장 정착구 하중전달시험)

  • Hur, Jae-Hoon;Lho, Byeong-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.8-14
    • /
    • 2021
  • Post-tensioned prestressed concrete members experience immediate prestress losses as well as time-dependent prestress losses such as creep, dry shrinkage and relaxation. In addition, the stress of the upper and lower parts of the member changes due to the change in dead load due to the replacement of the upper slab and/or pavement. Such changes in fiber stress may affect the safety of the member, and it is necessary to adjust the prestressing force. Therefore, in this study, a screw type of re-tensioning post-tension kit is proposed, and it is verified that the safety against load and the stability against strain are satisfied through the load transfer test specified in EAD160004 and KCI-PS101.