• Title/Summary/Keyword: post shape

Search Result 560, Processing Time 0.028 seconds

Analysis on the Behavior of Post-tensioned Precast Beam-Column Concrete Connectors (포스트텐션 프리캐스트 보-기둥 건식 콘크리트 접합부의 거동분석)

  • Song Hyung Soo;Ryu Jung Wook;Kim Yun Soo;Yu Sung Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.41-44
    • /
    • 2005
  • Three precast concrete beam-column connectors for the high-rise office buildings were considered to investigate the prestressing effects of the DDC(Dywidag Ductile Connectors) of Germany and of the modified DDC. The specimens of DDC, DDC with post-tensioning and modified DDC with post-tensioning were constructed and tested to verify the safety. The DDC with and without post-tensioning showed reliable joint strength and ductility but failed in critical x-shape crackings at the column. The modified one showed better behaviors in tests because they did not show critical column crackings at failure. The use of prestressing did not helpful significantly to increase the strength and ductility of connectors but helpful only to develop self-centering behavior for stability.

  • PDF

Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning (포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성)

  • 김진우
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

An analysis of progressing buckles of thin compressed beam with contact treatment (접촉을 고려한 보의 탄소성 좌굴진행 해석)

  • 김종봉;양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.28-31
    • /
    • 1997
  • Buckling analysis of thin compressed beam has been carried out. Pre-buckling and post-buckling are simulated by finite element method incorporating with the incremental nonlinear theory and the Newton-Raphson solution technique. In order to find the bifurcation point, the determinent of the stiffness matrix is calculated at every iteration procedure. For post-buckling analysis, a small perturbed initial guess is given along the eigenvector direction at the bifurcation point. Nonlinear elastic buckling and elastic-plastic buckling of cantilever beam are analyzed. The buckling load and buckled shape of the two models are compared.

  • PDF

A study on the topology optimization of structures (구조물의 토폴로지 최적화에 관한 연구)

  • Park, Sang-Hun;Yun, Seong-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1241-1249
    • /
    • 1997
  • The problem of structural topology optimization can be relaxed and converted into the optimal density distribution problem. The optimal density distribution must be post-processed to get the real shape of the structure. The extracted shape can then be used for the next process, which is usually shape optmization based on the boundary movement method. In the practical point of view, it is very important to get the optimal density distribution from which the corresponding shape can easily be extracted. Among many other factors, the presence of checker-board patterns is a powerful barrier for the shape extraction job. The nature of checker-board patterns seems to be a numerical locking. In this paper, an efficient algorithm is presented to suppress the checker-board patterns. At each iteration, density is re-distributed after it is updated according to the optimization rule. The algorithm also results in the optimal density distribution whose corresponding shape has smooth boundary. Some examples are presented to show the performance of the density re-distribution algorithm. Checker-board patterns are successfully suppressed and the resulting shapes are considered very satisfactory.

Shape memory alloy-based smart RC bridges: overview of state-of-the-art

  • Alam, M.S.;Nehdi, M.;Youssef, M.A.
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.367-389
    • /
    • 2008
  • Shape Memory Alloys (SMAs) are unique materials with a paramount potential for various applications in bridges. The novelty of this material lies in its ability to undergo large deformations and return to its undeformed shape through stress removal (superelasticity) or heating (shape memory effect). In particular, Ni-Ti alloys have distinct thermomechanical properties including superelasticity, shape memory effect, and hysteretic damping. SMA along with sensing devices can be effectively used to construct smart Reinforced Concrete (RC) bridges that can detect and repair damage, and adapt to changes in the loading conditions. SMA can also be used to retrofit existing deficient bridges. This includes the use of external post-tensioning, dampers, isolators and/or restrainers. This paper critically examines the fundamental characteristics of SMA and available sensing devices emphasizing the factors that control their properties. Existing SMA models are discussed and the application of one of the models to analyze a bridge pier is presented. SMA applications in the construction of smart bridge structures are discussed. Future trends and methods to achieve smart bridges are also proposed.

Software Development for Automatic Generation of Unit Shape Part for Variable Lamination Manufacturing Process (가변 적층 쾌속 조형 공정 개발을 위한 단위형상조각 자동 생성 소프트웨어 개발 및 적용 예)

  • 이상호;김태화;안동규;양동열;채희창;문영복;신보성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.763-766
    • /
    • 2000
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of parts due to layer-by-layer stackin, low build speed caused by line-by-line solidification to build one layer, and additional post processing to improve surface roughness, so it is required very high cost to introduce and to maintain RP apparatus. The objective of this study is to develop software for automatic generation of unit shape part (USP) for a new RP process, Variable Lamination Manufacturing using linear hotwire cutting technique and expandable polystyrene foam sheet as part material (VLM-S). In order to examine the applicability of the developed software to VLM-S, USP's of general three-dimensional shapes, such as an auto-shift lever knob and a pyramid shape were generated.

  • PDF

A Study on the Remanufacturing for Drive Spur Gear in Planner Miller by Directed Energy Deposition

  • Jin, Chul-Kyu;Kim, Min-Woo;Woo, Jae-Hyeog
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.941-952
    • /
    • 2022
  • In this study, additive manufacturing technology was applied to restore a planner miller that was unusable due to aging. The drive spur gear of the planner miller was inoperable due to many defects in the teeth. The shape of the defective gear teeth was restored by deposition of the defective teeth using the DED method. However, as the location of the deposition head and the location of the set origin became farther, the deposition shape was different from the modeling shape. Nonetheless, since the modeling of the deposition part was designed to be larger than the tooth shape of the original gear, it was possible to completely restore all gear teeth through post-processing. The arrangement interval of the flow lines of the deposition part was narrower than that of the substrate. The hardness of the substrate was 172 HV, and that of the deposition part was 345 HV, which was twice as high as that of the substrate.

FINITE EIEMENT ANALYSIS OF STRESS DISTRIBUTIONS OF DENTIN BY POST AND CORE SYSTEMS (하악 소구치용 post and core systems의 치근 내부 응력분산 효과에 대한 유한요소법적 연구)

  • Hong, Hyun-Ja;Jeon, Young-Chan;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.3
    • /
    • pp.397-412
    • /
    • 1995
  • The purpose of this study was to analyze the stress distribution in the dentin and post structures by the various post core materials and the amount of remaining coronal tooth structures. The 2-dimensional finite element models of mandibular 2nd premolars was divided into seven types according to the various amount of remaining coronal tooth structures. All types were modeled using equal length, diameter and shape of the post. 2 types of post and core materials were used : 1) cast gold post and core 2) stainless steel post and compsite resin core 10 Newton force was applied as follows 1) vertical force on occlusal fossa 2) $45^{\circ}$ oblique force on buccal surface of buccal cusp tip The results were as follows : 1. There was no apparent difference in the pattern of stress distribution according to the amount of remaining coronal tooth structure. 2. There was no apparent difference in the pattern of stress distribution within the dentin according to the post and core materials. A cast gold post and core generated lower dentin stress than a stainless steel post and resin core. 3. Max. dentinal stress resulting from vertical force was observed in the lingual side of dentin around the crown margin.This stress resulting from oblique force was observed in the lingual root surface of alveolar bone crest level.

  • PDF

Critical Loads and Post-Buckling Behaviour of Simply Supported Tapered Columns (단순지지(單純支持) 변단면(變斷面) 기둥의 임계하중(臨界荷重) 및 후좌굴(後挫屈) 거동(擧動))

  • Lee, Byoung Koo;Oh, Sang Jin;Mo, Jeong Man
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.17-26
    • /
    • 1991
  • Numerical methods are developed to obtain the critical loads and to analyze the post-buckling behaviour of the linearly varying tapered columns. The non-dimensional differential equations governing the elastica of post buckled column are derived by third order and solved numerically using the Runge-Kutta method and Regula-Falsi method. Three kinds of cross-sectional shape with simply supported end constraint are applied in unmerical examples. As the numerical results, the equlibrium paths. the typical elastica of post buckled columns and the critical load vs. section ratio curves are presented in figures. Also, the effects of cross-sectional shape factor on critical loads and postbuckling behaviour are presented in tables.

  • PDF