• Title/Summary/Keyword: post mating response

Search Result 5, Processing Time 0.02 seconds

A Pair of Oviduct-Born Pickpocket Neurons Important for Egg-Laying in Drosophila melanogaster

  • Lee, Hyunjin;Choi, Hyun Woo;Zhang, Chen;Park, Zee-Yong;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.573-579
    • /
    • 2016
  • During copulation, male Drosophila transfers Sex Peptide (SP) to females where it acts on internal sensory neurons expressing pickpocket (ppk). These neurons induce a post-mating response (PMR) that includes elevated egg-laying and refractoriness to re-mating. Exactly how ppk neurons regulate the different aspects of the PMR, however, remains unclear. Here, we identify a small subset of the ppk neurons which requires expression of a pre-mRNA splicing factor CG3542 for egg-laying, but not refractoriness to mating. We identify two CG3542-ppk expressing neurons that innervate the upper oviduct and appear to be responsible for normal egg-laying. Our results suggest specific subsets of the ppk neurons are responsible for each PMR component.

Associations of Polymorphisms in Four Immune-related Genes with Antibody Kinetics and Body Weight in Chickens

  • Ahmed, A.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.1089-1095
    • /
    • 2010
  • Four biological candidate genes, natural resistance associated macrophage protein 1 (SLC11A1 or NRAMP), prosaposin (PSAP), interferon Gamma (IFNG), and toll-like receptor 4 (TLR4), were examined to identify single nucleotide polymorphisms (SNP) and associations of the SNP with antibody response kinetics in hens. An $F_2$ population was produced by mating $G_0$ highly inbred (<99%) males of two MHC-congenic Fayoumi lines with highly inbred Leghorn hens. The $F_2$ hens (n = 158) were injected twice with SRBC and whole, fixed Brucella abortus (BA). Blood samples were obtained before each immunization, at 7 d after primary immunization, and at several time points after secondary immunization. Minimum titers (Ymin) and the time needed to reach them (Tmin), and maximum (Ymax) titers and the time needed to reach them (Tmax), were estimated from the seven post-secondary immunization titers using a nonlinear regression model. The $F_2$ hens were genotyped for the four candidate genes by using PCR-RFLP for one SNP per gene, which identified the parental allele. General linear models were used to test associations of SNP genotypes with antibody response parameters and BW measured at 4 ages. The IFNG SNP was highly significantly (p<0.0125) associated with primary response to SRBC, Tmin to BA, Ymin to BA, and 12-week BW. The current study demonstrated that the novel IFNG promoter SNP was associated with antibody kinetics for BA and SRBC in laying hens, and also with BW, suggesting that this cytokine may play a pivotal role in the relationship between immune function and growth.

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly (노랑초파리 난황형성과정 제어 신경 메커니즘)

  • Kim, Young-Joon;Zhang, Chen
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2022
  • Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.

Colletotrichum fructicola, a Member of Colletotrichum gloeosporioides sensu lato, is the Causal Agent of Anthracnose and Soft Rot in Avocado Fruits cv. "Hass"

  • Fuentes-Aragon, Dionicio;Juarez-Vazquez, Sandra Berenice;Vargas-Hernandez, Mateo;Silva-Rojas, Hilda Victoria
    • Mycobiology
    • /
    • v.46 no.2
    • /
    • pp.92-100
    • /
    • 2018
  • The filamentous Ascomycota Colletotrichum gloeosporioides sensu lato is a fungus that has been reported worldwide as a causal agent of anthracnose disease in avocado and other crops. In Mexico, this species affects fruits from an early stage of development in the orchard until the post-harvest stage. Although fungicides are continuously applied to control Colletotrichum species, pericarp cankers and soft rot mesocarp in fruits are still frequently observed. Considering the lack of a precise description of the causative agent, the aim of the current study was to determine the pathogens involved in this symptomatology. Twenty-four isolates were consistently obtained from the pericarp of avocado fruits cv. "Hass" collected in the central avocado-producing area of Mexico. Morphological features such as colony growth, conidia size, and mycelial appressorium were assessed. Bayesian multilocus phylogenetic analyses were performed using amplified sequences of the internal transcribed spacer region of the nuclear ribosomal DNA; actin, chitin synthase, glyceraldehyde-3-phosphate dehydrogenase partial genes; and APn2-Mat1-2 intergenic spacer and mating type Mat1-2 partial gene from the nine selected isolates. In addition, fruits were inoculated with a conidial suspension and reproducible symptoms confirmed the presence of Colletotrichum fructicola in this area. This pathogenic species can now be added to those previously reported in the country, such as C. acutatum, C. boninense, C. godetiae, C. gloeosporioides, and C. karstii. Disease management programs to reduce the incidence of anthracnose should include C. fructicola to determine its response to fungicides that are routinely applied, considering that the appearance of new species is affecting the commercial quality of the fruits and shifting the original population structure.

The Developmental Effects of Radiation on ICR Mouse Embryos in Preimplantation Stage (착상전기(着床前期)에 있어서 ICR Mouse의 태아(胎兒)에 대한 방사선(放射線) 개체(個體) Level 영향(影響)의 연구(硏究))

  • Gu, Yeun-Hwa
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.273-284
    • /
    • 1996
  • Embryos and fetuses are more sensitive to various environmental agents than are adults or children. The biological effects such as intrauterine death and malformation are closely connected with prenatal exposure very various agents. The sensitivity of these embryonic/fetal effects depends on the stage of pregnancy. From the viewpoint of fetal development, embryonic and fetal stages can be divided into three stages : Preimplantation, organogenetic and fetal. Each stage corresponds to 0 to 4.5days, 4.5 to 13.5days, and 13.5days of gestation in mice, respectively. Many studies on the biologcal effects of mice irradiated by ${\gamma}-rays$ at various stages during organogenesis and fetal period have been performed. Based on these results, the dose-effect and dose-response relationships in malformations, intrauterine death, or retardation of the physical growth have been practically modeled by the ICRP(International Commission on Radiological Protection) and other international bodies for radiation protection. Many experimental studies on mice have made it clear that mice embryos in the preimplantation period have a higher sensitivity to radiation for lethal effects than the embryos/fetuses on other prenatal periods. However, no eratogenic effects of radiation at preimplantation stages of mice have been described in many textbooks. It has been believed that 'all or none action results' for radiation of mice during the preimplantation period were applied. The teratogenic and lethal effects during the preimplantation stage are one of the most important problems from the viewpoint of radiological protection, since the preimplantation stage is the period when the pregnancy itself is not noticed by a pregnant woman. There are many physical or chemical agents which affect embryos/fetuses in the environment. It is assumed that each agents indirectly effects a human. Then, a safety criterion on each agent is determined independently. The pregnant ICR mice on 2, 48, 72 or 96 hours post-conception (hpc), at which are preimplantation stage of embryos, were irradiated whole body Cesium-gamma radiation at doses of 0.1, 0.25, 0.5, 1.5, and 2.5 Gy with dose rate of 0.2 Gy/min. In the embryos from the fetuses from the mice irradiated at various period in preimplantation, embryonic/fetal mortalities, incidence of external gross malformation, fetal body weight and sex ratio were observed at day 18 of gestation. The sensitivity of embryonic mortalities in the mice irradiated at the stage of preimplantation were higher than those in the mice irradiated at the stage of organogenesis. And the more sensitive periods of preimplantation stage for embryonic death were 2 and 48 hpc, at which embryos were one cell and 4 to 7 cell stage, respectively. Many types of the external gross malformations such as exencephaly, cleft palate and anophthalmia were observed in the fetuses from the mice irradiated at 2, 72 and 96 hpc. However, no malformations were observed in the mice irradiated at 48 hpc, at which stage the embryos were about 6 cell stage precompacted embryos. So far, it is believed that the embryos on preimplantation stage are not susceptible to teratogens such as radiation and chemical agents. In this study, the sensitivity for external malformations in the fetuses from the mice irradiated at preimplantation were higher than those in the fetuses on stage of organogenesis.

  • PDF