• Title/Summary/Keyword: post and beam

Search Result 503, Processing Time 0.026 seconds

Shear Strengthening by Externally Post-tensioning Steel Rods in Damaged Reinforced Concrete (RC) Beams (손상입은 철근콘크리트 보의 포스트텐셔닝 강봉을 이용한 전단 보강)

  • Lee, Swoo-Heon;Lee, Hee-Du;Park, Seong-Geun;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.3-10
    • /
    • 2018
  • This experimental investigation was conducted to observe the shear strengthening behavior of pre-damaged reinforced concrete (RC) beams strengthened with externally post-tensioning steel rods. A total of six simply supported beams - two control beams and four post-tensioned beams using external steel rods - were tested to failure in shear. The external steel rods of 18 mm or 28 mm diameter were respectively employed as post-tensioning material. The four post-tensioned beams have a V-shaped profile with a deviator (or saddle pin) located at mid-span, and the post-tensioning system increased the low load-carrying capacity and overcame a little bit of deflection caused by damage. Concretely, the load-carrying capacity and flexural stiffness were respectively increased by about 25~57% and 263~387% due to the post-tensioning when compared with the unstrengthened control beams.

Flexural Analysis of Steel Fiber Rreinforced Concrete Beam (강섬유 보강 콘크리트 보의 휨 해석)

  • 이차돈
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • An analytical simulation of the flexural behavior of SFRC beam has been illustrated. Curvature distributions and crack opening in critical region were taken into account. Compressive and tensile constitutive models which express post-peak behavior of SFRC with stress-crack opening relationships were incorporated in simulating nonlinear flexural behavior of the beam. The model was able to predict test results with reasonable accuracy. Behavior of the critical section and effects of different factors m the flexural behavior of SFRC beam were investigated. Simple observation and statistical approach have been made in selecting most influential parameters in flexural behavior of SFRC.

  • PDF

An Experimental Studies on Structural Behavior of Reinforced Concrete Beam-Columns with Enlarged Cross Sections (단면 증설된 보-기둥 부재의 구조성능에 관한 실험적 연구)

  • Shin, Yeong-Soo;Hong, Gi-Suop;Choi, Oan-Chul;Park, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • The major objects of this study is to investigate experimentally the strengthening effects and post-failure behavior of reinforced concrete beam-columns with enlarged sections. Tests are carried out to evaluate the influences of axial load intensities, thickness of encased steel plates and reinforcing bars in the grouted parts on the structural behavior of the specimens. The test results show that the amount of reinforcing bars and thickness of steel plate significantly affect on the structural behavior. The ultimate moment capacities of reinforced concrete beam-columns encased with 2mm-thick steel plate are significantly increased to about 10 times of those of unstrengthened specimens.

  • PDF

Flexural Capacity of RC Beams Strengthened with Carbon Fiber Sheets (탄소섬유시트로 보강된 철근콘크리트 보의 휨성능)

  • Park, Hyun-Jung;Cho, Baik-Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.3
    • /
    • pp.177-187
    • /
    • 2004
  • This investigation attempts to analyze the flexural behavior of a strengthened beam with carbon fiber sheets in three stages according to the conditions of the constituents : elastic stage, pre-yielding stage, and post-yielding stage. The proposed analytical method for strengthened beams is compared with the experimental results such as yield load, ultimate load, and flexural rigidities. The contributions of the constituents to the strengthened beam capacity are examined from the flexural analysis. The validity of using KCI strength method to estimate ultimate moment of a strengthened beam is also investigated.

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Toughness Index and Post-Crack Equivalent Tensile Strength of Steel Fiber Reinforced Concrete (강섬유 보강 콘크리트의 휨 인성지수와 균열 후 등가인장강도)

  • 박홍용;이태림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.593-596
    • /
    • 1999
  • Steel fibers are added to concrete to improve energy absorption, impact resistance and apparent ductility, and to provide crack resistance and crack control. This study is to investigate the toughness index and post-crack equivalent tensile strength of steel fiber reinforced concrete properties on the load-deflection behaviors of the steel fiber reinforced concrete beam model specimens.

  • PDF

New Approach to Integrated Structural Analysis and Design for Multistory RC/Post-Tensioned Buildings (ADAPT Edge 2012-RC/PT 다층 구조물 해석 및 설계 프로그램)

  • Aalami, Florian;Lee, Soo Heon
    • Computational Structural Engineering
    • /
    • v.25 no.4
    • /
    • pp.63-70
    • /
    • 2012
  • This article introduces ADAPT Corporation's latest software product for the integrated multistory analysis and design of concrete buildings, ADAPT Edge. Edge uniquely packages user-friendly modeling of multistory buildings, accurate gravity and lateral analysis, post-tensioning, and detailed slab and beam design, all in one software package. The benefits of Edge over traditional concrete design software are explained.

Insulation Details and Energy Performance of Post-Beam Timber House for Insulation Standards (단열 기준에 따른 기둥-보 목조주택의 단열 상세 및 에너지 성능)

  • Kim, Sejong;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.876-883
    • /
    • 2015
  • Han-green project, which pursues Korean style post and beam timber house with traditional construction technique of Han-ok, has been carried out in KFRI (Korea Forest Research Institute) since 2006. Recently, the improvement of its building energy performance was studied with energy-saving elements. This study was conducted to provide the insulation details of building envelopes in a post-beam timber house for recent enhanced insulation standards and following effect on building energy performance. The level of thermal transmittance (U-value) values of building envelopes was composed of two stages: present Korean insulation standards and passive house. To evaluate building energy performance, the building airtightness values of two stages was ACH50 = $3.0h^{-1}$ for common domestic timber house constructed recently, and ACH50 = $0.6h^{-1}$ for passive house. Consequently, four cases of the building energy performance according to the combination of U-value with airtightness were evaluated. The test house for evaluation was located in Seoul and its energy performance was evaluated with CE3 commercial building energy simulation program. The result showed that enhanced insulation from level I to II reduced $14kWh/(m^2{\cdot}a)$ of annual heating energy demand regardless of airtightness.

Analysis of Post-tensioned Bridge by Specially Orthotropic Laminate Theory (II) - Steel Plate Girder Bridge (특별직교이방성 이론에 의한 포스트 텐션된 교량의 해석(II) - 강 판형교 -)

  • 김덕현;원치문;이정호
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.141-146
    • /
    • 2001
  • A post-tensioned steel plate girder bridge with cross-beams is analyzed by specially orthotropic laminate theory. The cross-sections of both girders and cross-beams are WF types. The result is compared with that of the beam theory. This bridge with simple support is under uniformly distributed vertical load, and axial loads and moment due to post-tension. In this paper, finite difference method for numerical analysis of simple supported bridge is developed. Relatively exact solution is obtained even with small number of meshes. Theory and analysis method of specially orthotropic laminate plates used in this paper can be used in design of new bridges, and maintenance and repair of old bridges.

  • PDF

Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites

  • Fenjan, Raad M.;Faleh, Nadhim M.;Ahmed, Ridha A.
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.147-156
    • /
    • 2020
  • This research is related to nonlinear stability analysis of advanced microbeams reinforced by Graphene Platelets (GPLs) considering generic geometrical imperfections and thermal loading effect. Uniform, linear and nonlinear distributions of GPLs in transverse direction have been considered. Imperfection sensitivity of post-bucking behaviors of the microbeam to different kinds of geometric imperfections have been examined. Geometric imperfection is first considered to be identical as the first buckling mode, then a generic function is employed to consider sine-type, local-type and global-type imperfectness. Modified couple stress theory is adopted to incorporate size-dependent behaviors of the beam at micro scale. The post-buckling problem is solved analytically to derive load-amplitude curves. It is shown that post-buckling behavior of microbeam is dependent on the type geometric imperfection and its magnitude. Also, post-buckling load can be enhanced by adding more GPLs or selecting a suitable distribution for GPLs.