• Title/Summary/Keyword: possibility of major accident

Search Result 33, Processing Time 0.021 seconds

Development of Accident Taxonomy for Experimental Laboratory (연구실 사고분류 체계 개발)

  • Park, Kyoshik
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.49-53
    • /
    • 2016
  • The goal of this study is to analyze accidents occurred at experimental laboratory and to suggest hierarchical taxonomy applicable to prepare countermeasures reducing the experimental laboratory accidents. Recent 5 years accidents were analyzed and classified according to their primary cause, facility or human. Then in case of facility, the accidents were further classified whether they can be fixed by organization or by individual. In case of human factor, they were classified into physical, chemical, or biological to prepare precise measures. Depending on the adequacy of appropriate practice, several measures were suggested such as; whether to improve training of laboratory workers, or to improve training the system, or to improve or prepare practice substantially. A new taxonomy for laboratory accident was suggested complying other governmental agencies' classification such as KOSHA and KGS. Additionally, two kinds of possibilities were suggested such as possibility of major accident and possibility of disaster which can be defined as laboratory accident causing large scale of harmful consequence to residential area or environment by fire, explosion and/or toxic release of hazardous chemicals and/or microbiology.

A Study of Major Issues in the Act (Draft) on Remedy for Damage from Medical Accident and Medical Dispute Mediation, etc. (의료사고 피해구제 및 의료분쟁 조정 등에 관한 법률(안)의 주요 쟁점에 관한 고찰)

  • Park, Joon-Su
    • The Korean Journal of Health Service Management
    • /
    • v.4 no.2
    • /
    • pp.107-117
    • /
    • 2010
  • In this paper, the researcher looked into major issues in the "Act (Draft) on Remedy for Damage from Medical Accident and Medical Dispute Mediation, etc." which was proposed by the Health & Welfare Committee, the National Assembly of the Republic of Korea, and which was pending with the Legislation & Judiciary Committee. Then the researcher pointed out worrisome problems therein and presented suggestion" to improve problematic situations. First of all, the researcher examined the following items which are major points in the aforementioned Act: 1) Establishment of Korea Medical Dispute Mediation and Arbitration Center, 2) Procedures for mediation and arbitration of medical disputes, 3) Establishment of Medical Injury Compensation Association, 4) Introduction of proxy payment for damages, 5) Compensation for no-fault medical accidents, 6) A system concerned with special cases on criminal punishment. Next, the researcher closely reviewed the following possible issues: 1) Limit of arbitrary mediation, 2) Postponement of the system concerned with special case on criminal punishment, 3) Examination of reasons for rejection, 4) Function and role of the Appraisal department, 5) A possibility of being reduced to an evidence collection procedure for lawsuit, 6) A possibility of no-fault compensation rather than injury compensation, 7) Operational issues related proxy payment for damages. Lastly, the researcher presented suggestions on how to improve each problematic issue.

Development of logical structure for multi-unit probabilistic safety assessment

  • Lim, Ho-Gon;Kim, Dong-San;Han, Sang Hoon;Yang, Joon Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1210-1216
    • /
    • 2018
  • Site or multi-unit (MU) risk assessment has been a major issue in the field of nuclear safety study since the Fukushima accident in 2011. There have been few methods or experiences for MU risk assessment because the Fukushima accident was the first real MU accident and before the accident, there was little expectation of the possibility that an MU accident will occur. In addition to the lack of experience of MU risk assessment, since an MU nuclear power plant site is usually very complex to analyze as a whole, it was considered that a systematic method such as probabilistic safety assessment (PSA) is difficult to apply to MU risk assessment. This paper proposes a new MU risk assessment methodology by using the conventional PSA methodology which is widely used in nuclear power plant risk assessment. The logical failure structure of a site with multiple units is suggested from the definition of site risk, and a decomposition method is applied to identify specific MU failure scenarios.

Development of Severity Model for Rural Unsignalized Intersection Crashes (지방부 비신호 교차로 교통사고 심각도 예측모형 개발 - 수도권 주변 및 전라북도 지역의 3지 비신호 교차로를 중심으로 -)

  • Lee, Dong-Min;Kim, Eung-Cheol;Sung, Nak-Moon;Kim, Do-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.47-56
    • /
    • 2008
  • Generally, accident exposure at intersections is relatively higher than that at roadway segments due to more possibility of merging, diverging, turning, crossing, and weaving maneuver. Furthermore, the traffic accident rate at intersections has been rapidly increasing since 1990's. Since there is more opportunity of conflict at unsignalized intersection, frequency and severity of traffic accident are more severe than signalized intersections. The purpose of the study is to analyze factors causing vehicle crashes and provide intersection design guidelines to improve intersection safety. For this study, vehicle to vehicle crash data of 116 rural 3 legs unsignalized were collected and field surveys were conducted for traffic and geometric conditions. Ordered probit models were developed to analyze the severity of crashes. It was found that weather, obstacles in minor roadsides, presence of major exclusive right lane, presence of major road crosswalk, difference between posted speed of major road and minor road, land-use around intersections, shoulder width of major road, ADT of major road are significant factors for intersection safety.

  • PDF

INVESTIGATIONS ON THE RESOLUTION OF SEVERE ACCIDENT ISSUES FOR KOREAN NUCLEAR POWER PLANTS

  • Kim, Hee-Dong;Kim, Dong-Ha;Kim, Jong-Tae;Kim, Sang-Baik;Song, Jin-Ho;Hong, Seong-Wan
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.617-648
    • /
    • 2009
  • Under the government supported long-term nuclear R&D program, the severe accident research program at KAERI is directed to investigate unresolved severe accident issues such as core debris coolability, steam explosions, and hydrogen combustion both experimentally and numerically. Extensive studies have been performed to evaluate the in-vessel retention of core debris through external reactor vessel cooling concept for APR1400 as a severe accident management strategy. Additionally, an improvement of the insulator design outside the vessel was investigated. To address steam explosions, a series of experiments using a prototypic material was performed in the TROI facility. Major parameters such as material composition and void fraction as well as the relevant physics affecting the energetics of steam explosions were investigated. For hydrogen control in Korean nuclear power plants, evaluation of the hydrogen concentration and the possibility of deflagration-to-detonation transition occurrence in the containment using three-dimensional analysis code, GASFLOW, were performed. Finally, the integrated severe accident analysis code, MIDAS, has been developed for domestication based on MELCOR. The data transfer scheme using pointers was restructured with the modules and the derived-type direct variables using FORTRAN90. New models were implemented to extend the capability of MIDAS.

PREDICTION OF SEVERE ACCIDENT OCCURRENCE TIME USING SUPPORT VECTOR MACHINES

  • KIM, SEUNG GEUN;NO, YOUNG GYU;SEONG, POONG HYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.74-84
    • /
    • 2015
  • If a transient occurs in a nuclear power plant (NPP), operators will try to protect the NPP by estimating the kind of abnormality and mitigating it based on recommended procedures. Similarly, operators take actions based on severe accident management guidelines when there is the possibility of a severe accident occurrence in an NPP. In any such situation, information about the occurrence time of severe accident-related events can be very important to operators to set up severe accident management strategies. Therefore, support systems that can quickly provide this kind of information will be very useful when operators try to manage severe accidents. In this research, the occurrence times of several events that could happen during a severe accident were predicted using support vector machines with short time variations of plant status variables inputs. For the preliminary step, the break location and size of a loss of coolant accident (LOCA) were identified. Training and testing data sets were obtained using the MAAP5 code. The results show that the proposed algorithm can correctly classify the break location of the LOCA and can estimate the break size of the LOCA very accurately. In addition, the occurrence times of severe accident major events were predicted under various severe accident paths, with reasonable error. With these results, it is expected that it will be possible to apply the proposed algorithm to real NPPs because the algorithm uses only the early phase data after the reactor SCRAM, which can be obtained accurately for accident simulations.

Domestic Helicopter Accident Analysis using HFACS & Dirty Dozen

  • Kim, Su-Ro;Cho, Young-Jin;Song, Byung-Heym
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2020
  • Safety can be defined as being maintained or reduced to a level below which the possibility of human or physical harm can be tolerated through continuous identification of risks and safety risk management. FAA, EASA, IATA and Boeing, major organizations that conduct research and analysis for aviation safety around the world, report that about 70 percent of aviation accidents are caused by human factors, which have led to a surge in interest in human factors-induced accident prevention activities around the world. As part of this purpose, the FAA in the U.S. is raising awareness among aviation workers by publicizing the 12 human errors (Boeing, 2016), which account for the largest part of aviation accidents under the theme of Dirty Dozen, to prevent aviation accidents. Therefore, based on the domestic helicopter accidents reported to the Air Railroad Accident Investigation Committee from 2007 until recently, this study aims to use HFACS to extract human factors for the six recent helicopter accidents in Korea, analyze the extracted human factors in conjunction with the Dirty Dozen concept, and then present measures to prevent accidents by item.

Dose Assessment for Workers in Accidents (사고 대응 작업자 피폭선량 평가)

  • Jun Hyeok Kim;Sun Hong Yoon;Gil Yong Cha;Jin Hyoung Bai
    • Journal of Radiation Industry
    • /
    • v.17 no.3
    • /
    • pp.265-273
    • /
    • 2023
  • To effectively and safely manage the radiation exposure to nuclear power plant (NPP) workers in accidents, major overseas NPP operators such as the United States, Germany, and France have developed and applied realistic 3D model radiation dose assessment software for workers. Continuous research and development have recently been conducted, such as performing NPP accident management using 3D-VR based on As Low As Reasonably Achievable (ALARA) planning tool. In line with this global trend, it is also required to secure technology to manage radiation exposure of workers in Korea efficiently. Therefore, in this paper, it is described the application method and assessment results of radiation exposure scenarios for workers in response to accidents assessment technology, which is one of the fundamental technologies for constructing a realistic platform to be utilized for radiation exposure prediction, diagnosis, management, and training simulations following accidents. First, the post-accident sampling after the Loss of Coolant Accident(LOCA) was selected as the accident and response scenario, and the assessment area related to this work was established. Subsequently, the structures within the assessment area were modeled using MCNP, and the radiation source of the equipment was inputted. Based on this, the radiation dose distribution in the assessment area was assessed. Afterward, considering the three principles of external radiation protection (time, distance, and shielding) detailed work scenarios were developed by varying the number of workers, the presence or absence of a shield, and the location of the shield. The radiation exposure doses received by workers were compared and analyzed for each scenario, and based on the results, the optimal accident response scenario was derived. The results of this study plan to be utilized as a fundamental technology to ensure the safety of workers through simulations targeting various reactor types and accident response scenarios in the future. Furthermore, it is expected to secure the possibility of developing a data-based ALARA decision support system for predicting radiation exposure dose at NPP sites.

A Development of the Accident Prediction Models Considering Compound Curves (복합선형 사고예측모형 개발에 관한 연구)

  • Lee, Soo-Il;Won, Jai-Mu;Im, Ji-Hee;Lee, Jae-Myung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.2
    • /
    • pp.84-88
    • /
    • 2010
  • The main point of this study is to find ways to prevent accidents at complex linear sections in advance by improving geometric structure elements that can be considered from the designing stage. Complex linear roads are consisted of sections where straight sections connect with curved sections or sections where curved sections connect with curved sections with relatively high possibility of accidents and accidents can be reduced through improving designing elements in these sections. Therefore, this study aims to develop accident forecasting model in complex linear roads and to clarify major elements affecting traffic accidents. The results of analysis showed that the groups are divided into a group less than 355m based on curve radius of 355m, a group whose curve radius exceeds 355m and a group whose incline exceeds -0.79 and a group whose curve radius is below 355m and incline exceeds -0.79 for straight section + curved section, and for curved section + curved section, it is divided into a group whose first curved section is less than 410m based on curve radius of 410m and the first curve is turning right and a group exceeding 410m and the first curve is turning left. The major variables common in 2 models are front curve radius and curve types(left, right), road surfaces, weather.

Intra-Industry Market Response to the Tae-an Oil Spill Accident and the Corporate Environmental Disclosure (태안만 원유유출사건에 대한 시장반응과 환경공시)

  • Choi, Jong-Seo;Lim, Hyoung-Joo
    • Journal of Environmental Policy
    • /
    • v.11 no.2
    • /
    • pp.17-54
    • /
    • 2012
  • This paper researched market responses for listed companies in several industries affected by the major oil spill accident off the coast of Taean, in December 7, 2007. The Taean accident triggered considerable concerns in people over the possibility of potential future regulation in shipbuilding and petroleum industries. However, the accident also provided an unexpected business opportunity for environmental clean-up industry and shipbuilding industry. The oil spill triggered the acceleration of the enactment of policies that require all new oil tankers to be constructed with double hull, which is interpreted as a good news for shipbuilding industry. Increased public pressure coupled with the prospect of tightened regulation is expected to decrease the market values of firms in the affected business fields. The stock prices of shipbuilding companies dropped after the incident but dramatically surged after the enactment of the policy in January 31, 2008. Our study also found that companies with more extensive prior environmental disclosure had less negative market reactions during the first sixteen days following the accident.

  • PDF