• Title/Summary/Keyword: positron

Search Result 697, Processing Time 0.028 seconds

The Effect of PET Scan Time on the Off-Line PET Image Quality in Proton Therapy (양성자 치료에서 영상 획득 시간에 따른 Off Line PET의 효율성 검증)

  • Hong, Gun-Chul;Jang, Joon-Yung;Park, Se-Joon;Cha, Eun-Sun;Lee, Hyuk
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.21 no.2
    • /
    • pp.74-79
    • /
    • 2017
  • Purpose Proton therapy can deliver an optimal dose to tumor while reducing unnecessary dose to normal tissue as compared the conventional photon therapy. As proton beams are irradiated into tissue, various positron emitters are produced via nuclear fragmentation reactions. These positron emitters could be used for the dose verification by using PET. However, the short half-life of the radioisotopes makes it hard to obtain the enough amounts of events. The aim of this study is to investigate the effect of off-line PET imaging scan time on the PET image quality. Materials and Methods The various diameters of spheres (D=37, 28, 22 mm) filled with distilled water were inserted in a 2001 IEC body phantom. Then proton beams (100 MU) were irradiated into the center of the each sphere using the wobbling technique with the gantry angle of $0^{\circ}$. The modulation widths of the spread out bragg peak were 16.4, 14.7 and 9.3 cm for the spheres of 37, 28 and 22 mm in diameters respectively. After 5 min of the proton irradiation, the PET images of the IEC body phantom were obtained for 50 min. The PET images with different time courses (0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min) were obtained by dividing the frame with a duration of 10 min. In order to evaluate the off-line PET image quality with the different time courses, the contrast-to-noise ratio (CNR) of the PET image calculated for each sphere. Results The CNRs of the sphere (D=37 mm) were 0.43, 0.42, 0.40, 0.31 and 0.21 for the time courses of 0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min respectively. The CNRs of the sphere (D=28 mm) were 0.36, 0.32, 0.27, 0.19 and 0.09 for the time courses of 0-10 min, 11-20 min, 21-30 min, 31-40 min and 41-50 min respectively. The CNR of 37 mm sphere was decreased rapidly after 30 min of the proton irradiation. In case of the spheres of 28 mm and 22 mm, the CNR was decreased drastically after 20 min of the irradiation. Conclusion The off-line PET imaging time is an important factor for the monitoring of the proton therapy. In case of the lesion diameter of 22 mm, the off-line PET image should be obtained within 25 min after the proton irradiation. When it comes to small size of tumor, the long PET imaging time will be beneficial for the proton therapy treatment monitoring.

  • PDF

Evaluation of Standardized Uptake Value applying Prompt Gamma Correction on 68Ga-DOTATOC PET/CT Image (68Ga-DOTATOC PET/CT에서 Prompt Gamma Correction을 적용한 SUV의 평가)

  • Yoon, Seok Hwan
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • $^{68}Ga$ was eluted from a $^{68}Ge/^{68}Ga$ radionuclide generator. $^{68}Ga$ decays into $^{68}Zn$, with a half life=67.8min. The decay is 88.9 % by ${\beta}$+ and 11.1 % by EC. The main ${\beta}$+ decay (87.7 %) is to the ground level of $^{68}Zn$ and it is a pure positron emission branch. A small fraction decays ${\beta}$+ (1.2 %) into an excited level of $^{68}Zn$, which promptly decays into the ground level with a ${\gamma}$ (1.077 Mev). This can constitute prompt gamma contamination in the PET data, if the 1.077 Mev ${\gamma}$ has a scatter interaction in the patient, and generates a lower energy ${\gamma}$ in coincidence with the positron annihilation pair. The purpose of this study was to evaluate standardized uptake value(SUV) before and after applying prompt gamma rays correction on $^{68}Ga$-DOTATOC PET/CT image. Fifty patient underwent PET/CT 1 hour after injection of the $^{68}Ga$-DOTATOC. The SUVmax and SUVmean of lesions and normal tissues (Pituitary, Lung, Liver, Spleen, Kidney, Intestine) were evaluated before and after applying prompt gamma correction on $^{68}Ga$-DOTATOC PET/CT image. Additionally, the SUVmax of each lesions and SUVmean of the soft tissues were measured on images. and target to background ratios (TBR) were calculated as quantitative indices. Among 15 patients, 25 of lesions (Pancreas, Liver, Thoracic Spine, Brain) with increased uptake on $^{68}Ga$-DOTATOC PET/CT image. SUVmax and SUVmean were increased in lesion site and normal tissue after prompt gamma rays correction. TBR was $51.51{\pm}49.28$ and $55.50{\pm}53.12$ before and after prompt gamma rays correction, respectively. (p<0.0001)

Staging of Esophageal Cancer Using Positron Emission Tomography : Comparing to Computed Tomography (양전자방출단층촬영술(PET)을 이용한 식도암 환자의 병기 결정 -전산화단층촬영술(CT)과의 비교-)

  • 심영목;박승준;김병태;김성철
    • Journal of Chest Surgery
    • /
    • v.32 no.4
    • /
    • pp.388-393
    • /
    • 1999
  • Background: Correct preoperative staging of esophageal cancer is a prerequisite for adequate treatment. We prospectively compared the accuracy of positron emission tomography (PET) with [fluorine-18]FDG in the staging of esophageal cancer to that of computed tomography (CT). Material and Method: The findings of FDG PET and of chest CT including lower neck and the upper abdomen of 20 biopsy-proven squamous cell carcinoma patients (male, 19; female, 1; mean age, 61) were compared with the pathologic findings obtained from a curative esophagectomy with lymph node dissection. Result: The sensitivities of FDG PET and CT for diagnosis of primary tumor were the same, 90.0% (18/20). Both FDG PET and CT failed to show the primary tumor in 2 of 20 patients; one had a 1cm sized carcinoma in situ and the other had T1 stage cancer. By using the results of the pathologic examinations of 193 removed lymph node groups, we calculated the diagnostic sensitivities, specificities and accuracies of PET and CT (*$\chi$2 p < 0.005). Sensitivity** Specificity Accuracy* PET 55.6%(30/54) 97.1%(135/139) 85.5%(165/193) CT 13.0%(7/54) 98.6%(137/139) 74.6%(144/193) One of four patients with a false-positive for PEThad had active pulmonary tuberculosis. Among the 24 tumor involved lymph node groups, PET failed to show tumor metastasis in 5 lymph node groups abutting the tumor and in 14 lymph node groups located where the decay correction was not performed. Conclusion: Based on the above findings, it is suggested that [F-18]FDG-PET is superior to CT in the detection of nodal metastases and in the staging of patients with esophageal cancer.

  • PDF

Accuracy of F-18 FDG PET/CT in Preoperative Assessment of Cervical Lymph Nodes in Head and Neck Squamous Cell Cancer: Comparison with CT/MRI (두경부 편평상피암 환자에서 수술 전 경부림프절 전이 평가에 대한 F-18 FDG PET/CT의 정확도: CT/MRI와의 비교)

  • Choi, Seung-Jin;Byun, Sung-Su;Park, Sun-Won;Kim, Young-Mo;Hyun, In-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.6
    • /
    • pp.309-315
    • /
    • 2006
  • Purpose: Accurate evaluation of cervical lymph node (LN) metastasis of head and neck squamous cell canter (SCC) is important to treatment planning. We evaluated the diagnostic accuracy of F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for the detection of cervical LN metastasis of head and neck SCC and performed a retrospective comparison with CT/MRI findings. Materials & Methods: Seventeen patients with pathologically proven head and neck SCC underwent F-18 FDG PET/CT and CT/MRI within 4 week before surgery. We recorded lymph node metastases according to the neck level system of imaging-based nodal classification. F-18 FDG PET/CT images were analyzed visually for assessment of regional tracer uptake in LN. We analyzed the differences in sensitivity and specificity between F-18 FDG PET/CT and CT/MRI using the Chi-square test. Results: Among the 17 patients, a total of 123 LN levels were dissected, 29 of which showed metastatic involvement. The sensitivity and specificity of F-18 FDG PET/CT for detecting cervical LN metastasis on a level-by-level basis were 69% (20/29) and 99% (93/94). The sensitivity and specificity of CT/MRI were 62% (18/29) and 96% (90/94). There was no significant difference in diagnostic accuracy between F-18 FDG PET/CT and CT/MRI. Interestingly, F-18 FDG PET/CT detected double primary tumor (hepatocellular carcinoma) and rib metastasis, respectively. Conclusion: There was not statistically significant difference of diagnostic accuracy between F-18 FDG PET/CT and CT/MRI for the detection of cervical LN metastasis of head and neck SCC. The low sensitivity of F-18 FDG PET/CT was due to limited resolution for small metastatic deposits.

Standard Performance Measurements of GE $Advance^{TM}$ Positron Emission Tomography (GE $Advance^{TM}$ 양전자방출단층촬영기의 표준 성능평가)

  • Jeong, Ha-Kyu;Kim, Hee-Joung;Son, Hye-Kyung;Bong, Jung-Kyun;Jung, Hai-Jo;Jeon, Tae-Joo;Kim, Jae-Sam;Lee, Jong-Doo;Yoo, Hyung-Sik
    • The Korean Journal of Nuclear Medicine
    • /
    • v.35 no.2
    • /
    • pp.100-112
    • /
    • 2001
  • Purpose: The purpose of this study was to establish optimal imaging acquisition conditions for the GE $Advance^{TM}$ PET imaging system by performing the acceptance tests designed by National Electrical Manufacturers Association (NEMA) protocol and General Electric Medical Systems (GEMS) test procedures. Materials and Methods: Performance tests were carried out with $^{18}FDG$ radioactivity source and phantoms by using a standard acquisition mode. Transaxial resolution and scatter traction tests were performed with a line source and axial resolution with a point source, respectively. A cylindrical phantom made of polymethylmethacrylate (PMMA) was used to measure sensitivity, count rate losses and randoms, uniformity correction, and attenuation inserts were added to measure remaining tests. The test results were acquired in a diagnostic acquisition mode and analyzed mainly on high sensitivity mode. Results: Transaxial resolution and axial resolution were measured as average of 4.65 mm and 3.98 mm at 0 cm, and 6.02 mm and 6.71 mm at 20 cm on high sensitivity mode, respectively. Average scatter fraction was 9.87%, and sensitivity was $225.8kcps/{\mu}Ci/cc$ of trues. Activity at 50% deadtime was $4.6{\mu}Ci/cc$, and the error of count rate correction at that activity was from 1.49% to 3.83%. Average nonuniformity for total slice w3s 8.37%. The accuracy of scatter correction was -0.95%. The accuracies of attenuation correction were 5.68% for air, 0.04% for water and -6.51% for polytetrafluoroethylene (PTFE). Conclusion: The results satisfied most acceptance criteria, indicating that the GE $Advance^{TM}$ PET system can be optimally used for clinical applications.

  • PDF

Usefulness of Dynamic $^{18}F-FDG$ PET Scan in Lung Cancer and Inflammation Disease (폐암과 폐 염증성질환의 동적양전자방출단층검사 (Dynamic $^{18}F-FDG$ PET)의 유용성)

  • Park, Hoon-Hee;Roh, Dong-Wook;Kim, Sei-Young;Rae, Dong-Kyeong;Lee, Min-Hye;Kang, Chun-Goo;Lim, Han-Sang;Oh, Ki-Back;Kim, Jae-Sam;Lee, Chang-Ho
    • Journal of radiological science and technology
    • /
    • v.29 no.4
    • /
    • pp.249-255
    • /
    • 2006
  • Purpose: The diagnostic utility of fluorine-18 2-deoxy-D-glucose positron emission tomograhpy ($^{18}F-FDG $PET) for the non-invasive differentiation of focal lung lesions originated from cancer or inflammation disease by combined visual image interpretation and semi-quantitative uptake value analysis has been documented. In general, Standardized Uptake Value(SUV) is used to diagnose lung disease. But SUV does not contain dynamic information of lung tissue for the glucose. Therefore, this study was undertaken to hypothesis that analysis of dynamic kinetics of focal lung lesions base on $^{18}F-FDG$ PET may more accurately determine the lung disease. So we compared Time Activity Curve(TAC), Standardized Uptake Value-Dynamic Curve(SUV-DC) graph pattern with Glucose Metabolic Rate(MRGlu) from Patlak analysis. Methods: With lung disease, 17 patients were examined. They were injected with $^{18}F-FDG$ over 30-s into peripheral vein while acquisition of the serial transaxial tomographic images were started. For acquisition protocol, we used twelve 10-s, four 30-s, sixteen 60-s, five 300-s and one 900-s frame for 60 mins. Its images were analyzed by visual interpretation TAC, SUV-DC and a kinetic analysis(Patlak analysis). The latter was based on region of interest(ROIs) which were drawn with the lung disease shape. Each optimized patterns were compared with itself. Results: In TAC patterns, it hard to observe cancer type with inflammation disease in early pool blood area but over the time cancer type slope more remarkably increased than inflammation disease. SUV-DC was similar to TAC pattern. In the result of Patlak analysis, In time activity curve of aorta, even though inflammation disease showed higher blood activity than cancer, at first as time went by, blood activity of inflammation disease became the lowest. However, in time activity curve of tissue, cancer had the highest uptake and inflammation disease was in the middle. Conclusion: Through the examination, TAC and SUV-DC could approached the results that lung cancer type and inflammation disease type has it's own difference shape patterns. Also, it has outstanding differentiation between cancer type and inflammation in Patlak and MRGlu analysis. Through these analysis methods, it will helpful to separation lung disease.

  • PDF

Evaluation of Temperature and Humidity of a Thermo-Hygrostat of PET/CT Equipment using a Temperature and Humidity Sensor(BME 280) (온·습도센서(BME 280 센서)를 이용한 PET/CT 장비의 항온 항습기 온·습도 평가)

  • Ryu, Chan-Ju;Kim, Jeong-A;Kim, Jun-Su;Yun, Geun-Yeong;Heo, Seung-Hui;Hong, Seong-Jong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2020
  • PET(Positron Emission Tomography) devices are used as PET/CT or PET/MRI devices fused with the devices of CT or MRI for obtaining anatomical information. Therefore, the devices are constructed in circular ring-type structure whose length of gantry(the main part of filming) becomes wider and the interior depth becomes longer in comparison to other common medical equipments. scintillator, one of the components in PET devices, is inside the gantry, and as it is consisted of crystal which is sensitive to the change of temperature and humidity, large temperature change can cause the scintillator to be damaged. Though scintillator located inside the gantry maintains temperature and humidity with a thermo-hygrostat, changes in temperature and humidity are expected due to structural reasons. The output value was measured by dividing the inside of the gantry of the PET/CT device into six zones, each of which an Adafruit BME 280 temperature and humidity sensor was placed at. A thermo-hygrostat keeps the temperature and humidity constant in the PET/CT room. As the measured value of temperature and humidity of the sensor was obtained, the measured value of temperature and humidity appeared in the thermohygrostat was taken at the same time. Comparing the average measured values of temperature and humidity measured at each six zones with the average values of the thermo-hygrostat results in a difference of 2.71℃ in temperature and 21.5% in humidity. The measured temperature and humidity of PET Gantry is out of domestic quality control range. According to the results of the study, if there is continuous change in temperature and humidity in the future, the aging of the scintillator mounted in the PET Gantry is expected to be aging, so it is necessary to find a way to properly maintain the temperature and humidity inside the Gantry structure.

Efficacy of Positron Emission Tomography in Diagnosing Pulmonary Tumor and Staging of Lung Cancer : Comparing to Computed Tomography (폐종양과 폐암의 병기결정에 대한 양전자단층촬영(PET)의 유용성 -전산화단층촬영 (CT)과의 비교-)

  • 김오곤;조중행;성숙환
    • Journal of Chest Surgery
    • /
    • v.36 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • Diagnosing and determining the stage of lung cancer by means of positron emission tomography (PET) ha.. been proven valuable because of the limitations of diagnosis by computed tomography (CT). We compared the efficacy of PET with that of CT in diagnosing pulmonary tumor and staging of lung cancer Material and Method: We performed F-18 FDG PET to determine the malignancy and the staging on patients who have been suspicious or were diagnosed as lung cancer by chest X-ray and CT. The findings of PET and of CT of 41 patients (male, 29: female, 12: mean age, 59) were compared with pathologic findings obtained from a mediastinoscopy and thoracotomy. Result: Out of 41 patients, 35 patients had malignant lesions (squamous cell carcinonla 19 cases, adenocarcinoma 14 cases, adenosquamous cell carcinoma 2 cases) and 6 patients had benign lesions. Diagnosing of lung cancer, the sensitivity, specificity and accuracy of CT and PET were the same for two method and the numbers were 100%, 50%, and 92.7% respectively. Eighteen LN groups out of 108 mediastinal LN groups who recieved histologic examination proved to be malignant. Pathologic lymph node (LN) stage was N0-Nl 31 cases, N2 8 cases, N3 2 cases. The correct identification of the nodal staging with CT, PET scans were 31 cases (75.6%), 28 cases (68.3%) respectively. The LN group was underestimated in each 6 cases of CT and PET. In 4 cases of CT and 7 cases of PET, they were overestimated in compare to histologic diagnosis. In the detection of mediastinal LN groups invasion, the sensitivity, specificity and accuracy of CT were 39.8 %, 93.3 %, and 84.3 % respectively. For PET, they were 61.1 %, 90.0 %, and 85.2 %. When two methods considered together (CT+PET), they were increased to 77.8 %, 93.3 %, and 90.7 % respectively. Conclusion: PET appears to be similar to CT in the diagnosis and the nodal taging of pulmonary tumor. Two tests may stage patients with lung cancer more accurately than CT alone.

F-18-FDG Whole Body Scan using Gamma Camera equipped with Ultra High Energy Collimator in Cancer Patients: Comparison with FDG Coincidence PET (종양 환자에서 초고에너지(511 keV) 조준기를 이용한 전신 F-18-FDG 평면 영상: Coincidence 감마카메라 단층 촬영 영상과의 비교)

  • Pai, Moon-Sun;Park, Chan-H.;Joh, Chul-Woo;Yoon, Seok-Nam;Yang, Seung-Dae;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 1999
  • Purpose: The aim of this study is to demonstrate the feasibility of 2-[fluorine-18] fluoro-2-deoxy-D-glucose (F-18-FDG) whole body scan (FDG W/B Scan) using dual-head gamma camera equipped with ultra high energy collimator in patients with various cancers, and compare the results with those of coincidence imaging. Materials and Methods: Phantom studies of planar imaging with ultra high energy and coincidence tomography (FDG CoDe PET) were performed. Fourteen patients with known or suspected malignancy were examined. F-18-FDG whole body scan was performed using dual-head gamma camera with high energy (511 keV) collimators and regional FDG CoDe PET immediately followed it Radiological, clinical follow up and histologic results were correlated with F-18-FDG findings. Results: Planar phantom study showed 13.1 mm spatial resolution at 10 cm with a sensitivity of 2638 cpm/MBq/ml. In coincidence PET, spatial resolution was 7.49 mm and sensitivity was 5351 cpm/MBq/ml. Eight out of 14 patients showed hypermetabolic sites in primary or metastatic tumors in FDG CoDe PET. The lesions showing no hypermetabolic uptake of FDG in both methods were all less than 1 cm except one lesion of 2 cm sized metastatic lymph node. The metastatic lymph nodes of positive FDG uptake were more than 1.5 cm in size or conglomerated lesions of lymph nodes less than 1cm in size. FDG W/B scan showed similar results but had additional false positive and false negative cases. FDG W/B scan could not visualize liver metastasis in one case that showed multiple metastatic sites in FDG CoDe PET. Conclusion: FDG W/B scan with specially designed collimators depicted some cancers and their metastatic sites, although it had a limitation in image quality compared to that of FDG CoDe PET. This study suggests that F-18-FDG positron imaging using dual-head gamma camera is feasible in oncology and helpful if it should be more available by regional distribution of FDG.

  • PDF

Prognostic Usefulness of Maximum Standardized Uptake Value on FDG-PET in Surgically Resected Non-small-cell Lung Cancer (수술로 제거된 비소세포폐암의 예후 예측에 있어 FDG-PET 최대 표준화 섭취계수의 유용성)

  • Nguyen Xuan Canh;Lee Won-Woo;Sung Sook-Whan;Jheon Sang-Hoon;Kim Yu-Kyeong;Lee Dong-Soo;Chung June-Key;Lee Myung-Chul;Kim Sang-Eun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.205-210
    • /
    • 2006
  • Purpose: FDG uptake on positron omission tomography (PET) has been considered a prognostic indicator in non-small cell lung cancer (NSCLC). The aim of this study was to assess the clinical significance of maximum value of SUV (maxSUV) in recurrence prediction in patients with surgically resected NSCLC. Materials & methods: NSCLC patients (n=42, F:M =14:28, age $62.3{\pm}12.3$ y) who underwent curative resection after FDG-PET were enrolled. Twenty-nine patients had pathologic stage 1, and 13 had pathologic stage II. Thirty-one patients were additionally treated with adjuvant oral chemotherapy. MaxSUVs of primary tumors were analyzed for correlation with tumor recurrence and compared with pathologic or clinical prognostic indicators. The median follow-up duration was 16 mo (range, 3-26 mo). Results: Ten (23.8%) of the 42 patients experienced recurrence during a median follow-up of 7.5 mo (range, 3-13 mo). Univariate analysis revealed that disease-free survival (DFS) was significantly correlated with maxSUV (<7 vs. $\geq7$, p=0.006), tumor size (<3 cm vs. $\geq3$ cm, p=0.024), and tumor tell differentiation (well/moderate vs. poor, p=0.044). However, multivariate Cox proportional analysis identified maxSUV as the single determinant for DFS (p=0.014). Patients with a maxSUV of $\geq7$(n=10) had a significantly lower 1-year DFS rate (50.0%) than those with a maxSUV of <7 (n=32, 87.5%). Conclusion: MaxSUV is a significant independent predictor for recurrence in surgically resected NSCLC. FDG uptake can be added to other well-known factors in prognosis prediction of NSCLC.