• Title/Summary/Keyword: positive feature

Search Result 458, Processing Time 0.022 seconds

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Effective Dimensionality Reduction of Payload-Based Anomaly Detection in TMAD Model for HTTP Payload

  • Kakavand, Mohsen;Mustapha, Norwati;Mustapha, Aida;Abdullah, Mohd Taufik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3884-3910
    • /
    • 2016
  • Intrusion Detection System (IDS) in general considers a big amount of data that are highly redundant and irrelevant. This trait causes slow instruction, assessment procedures, high resource consumption and poor detection rate. Due to their expensive computational requirements during both training and detection, IDSs are mostly ineffective for real-time anomaly detection. This paper proposes a dimensionality reduction technique that is able to enhance the performance of IDSs up to constant time O(1) based on the Principle Component Analysis (PCA). Furthermore, the present study offers a feature selection approach for identifying major components in real time. The PCA algorithm transforms high-dimensional feature vectors into a low-dimensional feature space, which is used to determine the optimum volume of factors. The proposed approach was assessed using HTTP packet payload of ISCX 2012 IDS and DARPA 1999 dataset. The experimental outcome demonstrated that our proposed anomaly detection achieved promising results with 97% detection rate with 1.2% false positive rate for ISCX 2012 dataset and 100% detection rate with 0.06% false positive rate for DARPA 1999 dataset. Our proposed anomaly detection also achieved comparable performance in terms of computational complexity when compared to three state-of-the-art anomaly detection systems.

The Relationship between Sensory Processing Feature, Leisure Participation Type, Perception of Occupational Participation and Quality of Life for University Students' Life Care (대학생의 라이프케어를 위한 감각처리특성과 여가참여유형, 작업참여인식 및 삶의 질과의 관련성)

  • Park, Young-Ju
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.6
    • /
    • pp.203-210
    • /
    • 2019
  • The purpose of this study was to investigate the correlation between sensory processing feature, leisure participation type, perception of occupational participation, and quality of life (QoL) for life care in university students. The survey was conducted from February 2019 to March for 169 university students. The author used the Adolescent / Adult Sensory Profiles (AASP) for sensory processing, and used the leisure activity questionnaire to find out the type of leisure participation, and used the Occupational Self Assessment (OSA) for perception of occupational participation, and the Satisfaction With Life Scale (SWLS) for QoL. Pearson correlation analysis was used for the relationship between sensory processing feature, leisure participation type, perception of occupational participation, and QoL. Among the sensory processing feature, there was a positive correlation between low registration and sports. And there was a positive correlation between sensory seeking and sports, social activities, tourism. There was a negative correlation between perception of occupational participation and low registration, sensory sensitivity, sensory avoiding. Hobbies, appreciativeness and social activities showed a significant positive correlation with perception of occupational participation. And also there was a positive correlation between perception of occupational participation and QoL (p <.05, p <.01). Sensory processing feature correlated with leisure participation type, occupational participation perception, and QoL. Future research should develop evaluation tool for leisure activities, occupational participation and QoL based on sensory processing.

Comparison of Customers Perception of Feature and Smart Phone Users Mainly in 20s

  • Kim, Hyun-Jong
    • Journal of Digital Convergence
    • /
    • v.9 no.1
    • /
    • pp.115-124
    • /
    • 2011
  • The property of the mobile phone is taking important role to choose it. In the present situation, exploring, comparing and analyzing the important properties of regular mobile phone(feature phone) and smart phone are very meaningful study. Therefore, the survey was carried out to get the properties of feature phone and smart phone and analyze the difference of those phones. And proposed the important variables for customer satisfaction which must be given priority. The result showed that 'design' and 'Quality' are important to both mobile phone user groups. The problems with mobile phones currently in use were 'poor performance' to feature phone users and 'expensive charge' and 'poor A/S' to smart phone users. Two groups also showed significant difference with the customer satisfactions, and smart phone user group showed higher satisfaction. For smart phone user group, four factors are induced from the properties but 'Hardware Quality' (representing 'call Quality', 'A/S', 'Convenience to use', 'Battery life') and 'Design & Function'(representing 'Internet', 'Convergence Functions', 'Design, 'Color') have significant and positive effects on Customer Satisfaction.

Viola-Jones Object Detection Algorithm Using Rectangular Feature (사각 특징을 추가한 Viola-Jones 물체 검출 알고리즘)

  • Seo, Ji-Won;Lee, Ji-Eun;Kwak, No-Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.18-29
    • /
    • 2012
  • Viola-Jones algorithm, a very effective real-time object detection method, uses Haar-like features to constitute weak classifiers. A Haar-like feature is made up of at least two rectangles each of which corresponds to either positive or negative areas and the feature value is computed by subtracting the sum of pixel values in the negative area from that of pixel values in the positive area. Compared to the conventional Haar-like feature which is made up of more than one rectangle, in this paper, we present a couple of new rectangular features whose feature values are computed either by the sum or by the variance of pixel values in a rectangle. By the use of these rectangular features in combination with the conventional Haar-like features, we can select additional features which have been excluded in the conventional Viola-Jones algorithm where every features are the combination of contiguous bright and dark areas of an object. In doing so, we can enhance the performance of object detection without any computational overhead.

Smoke Detection Method Using Local Binary Pattern Variance in RGB Contrast Imag (RGB Contrast 영상에서의 Local Binary Pattern Variance를 이용한 연기검출 방법)

  • Kim, Jung Han;Bae, Sung-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.10
    • /
    • pp.1197-1204
    • /
    • 2015
  • Smoke detection plays an important role for the early detection of fire. In this paper, we suggest a newly developed method that generated LBPV(Local Binary Pattern Variance)s as special feature vectors from RGB contrast images can be applied to detect smoke using SVM(Support Vector Machine). The proposed method rearranges mean value of the block from each R, G, B channel and its intensity of the mean value. Additionally, it generates RGB contrast image which indicates each RGB channel’s contrast via smoke’s achromatic color. Uniform LBPV, Rotation-Invariance LBPV, Rotation-Invariance Uniform LBPV are applied to RGB Contrast images so that it could generate feature vector from the form of LBP. It helps to distinguish between smoke and non smoke area through SVM. Experimental results show that true positive detection rate is similar but false positive detection rate has been improved, although the proposed method reduced numbers of feature vector in half comparing with the existing method with LBP and LBPV.

An automatic detection method for lung nodules based on multi-scale enhancement filters and 3D shape features

  • Hao, Rui;Qiang, Yan;Liao, Xiaolei;Yan, Xiaofei;Ji, Guohua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.347-370
    • /
    • 2019
  • In the computer-aided detection (CAD) system of pulmonary nodules, a high false positive rate is common because the density and the computed tomography (CT) values of the vessel and the nodule in the CT images are similar, which affects the detection accuracy of pulmonary nodules. In this paper, a method of automatic detection of pulmonary nodules based on multi-scale enhancement filters and 3D shape features is proposed. The method uses an iterative threshold and a region growing algorithm to segment lung parenchyma. Two types of multi-scale enhancement filters are constructed to enhance the images of nodules and blood vessels in 3D lung images, and most of the blood vessel images in the nodular images are removed to obtain a suspected nodule image. An 18 neighborhood region growing algorithm is then used to extract the lung nodules. A new pulmonary nodules feature descriptor is proposed, and the features of the suspected nodules are extracted. A support vector machine (SVM) classifier is used to classify the pulmonary nodules. The experimental results show that our method can effectively detect pulmonary nodules and reduce false positive rates, and the feature descriptor proposed in this paper is valid which can be used to distinguish between nodules and blood vessels.

Lane Violation Detection System Using Feature Tracking (특징점 추적을 이용한 끼어들기 위반차량 검지 시스템)

  • Lee, Hee-Sin;Lee, Joon-Whoan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.8 no.2
    • /
    • pp.36-44
    • /
    • 2009
  • In this paper, we suggest a system of detecting a vehicle with lane violation, which can detect the vehicle with lane violation, by using the feature point tracking. The whole algorithm in the suggested system of detecting a vehicle with lane violation is composed of three stages such as feature extraction, register and tracking in feature for the tracking-targeted vehicle, and detecting a vehicle with lane violation. In the stage of feature extraction, the feature is extracted from the inputted image by sing the feature-extraction algorithm available for the real-time processing. The extracted features are again selected the racking-targeted feature. The registered feature is tracked by using NCC(normalized cross correlation). Finally, whether or not lane violation is finally detected by using information on the tracked features. As a result of experimenting the suggested system by using the acquired image in the section with a ban on intervention, the excellent performance was shown with 99.09% for positive recognition ratio and 0.9% for error ratio. The fast processing speed could be obtained in 34.48 frames per second available for real-time processing.

  • PDF

The Impact of Social Media Overload on Users' Unintentional Avoidance Behavior (소셜 미디어 과부하가 사용자의 비의도적 회피 행동에 미치는 영향)

  • Qiao, Xin;Oh, Se Hwan
    • The Journal of Information Systems
    • /
    • v.32 no.3
    • /
    • pp.165-181
    • /
    • 2023
  • Purpose Digital platforms, together with the innovative technologies of modern society, are accelerating the digital innovation of the entire economy and society. Although social media platforms are gradually integrated into daily life, due to social media overload, users limit their use of the platform for a certain period of time or eventually choose to stop using it. In the context of social media platform, the purpose of this paper is to study the effects of information overload, social overload and system function overload on users' unintentional avoidance behavior, mediated by fatique and dissatisfaction. Design/methodology/approach This study empirically examines the influence of social media overload characteristics on users' unintentional avoidance behavior of platform utilization using the S-O-R framework. Data from 236 Chinese social media users were collected through a questionnaire survey, and the hypotheses were validated by evaluating the research model using the SmartPLS 4.0 program using Partial Least Square (PLS) method. Findings According to the empirical analysis result, based on the S-O-R model, first, it is confirmed that information overload and system feature overload have significant positive(+) effects on fatigue. Second, this study finds that information overload, social overload and fatigue have significant positive(+) effects on dissatisfaction. Thirdly, fatigue and dissatisfaction have significant positive(+) effects on unintentional avoidance. In addition, social overload has no significant effect on fatigue, while system feature overload has no significant effect on dissatisfaction.

Exploiting Color Segmentation in Pedestrian Upper-body Detection (보행자 상반신 검출에서의 컬러 세그먼테이션 활용)

  • Park, Lae-Jeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.181-186
    • /
    • 2014
  • The paper proposes a new method of segmentation-based feature extraction to improve performance in pedestrian upper-body detection. General pedestrian detectors that use local features are often plagued by false positives due to the locality. Color information of multi parts of the upper body is utilized in figure-ground segmentation scheme to extract an salient, "global" shape feature capable of reducing the false positives. The performance of the multi-part color segmentation-based feature is evaluated by changing color spaces and the parameters of color histogram. The experimental result from an upper-body dataset shows that the proposed feature is effective in reducing the false positives of local feature-based detectors.