• Title/Summary/Keyword: positioning technology

Search Result 1,433, Processing Time 0.029 seconds

Precise open-loop positioning using LPM with error correction

  • Furuhashi, Hideo;Shingu, Hiroyasu;Hayashi, Niichi;Watanabe, Shigeo;Sumi, Tetsuo;Uchida, Yoshiyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.211-214
    • /
    • 1995
  • A precise open-loop positioning system using linear pulse motor has been developed. The system is operated in a microstepping mode by controlling the electric current. One step of 508 .mu.m (tooth pitch of the linear pulse motor) is divided into 508 micro-steps equally. The displacement is measured with a system using a Fiezeau-type interferometer. Periodical positioning error with a period of the tooth pitch was observed in this system. Therefore, the position is corrected using the error. The error is stored into computer in advance, and the microstep current is corrected on basis of the stored data. Although the positioning error of the system without the correction was .+-.4.5 .mu.m, that with the correction was decreased to .+-.1.0 .mu.m.

  • PDF

Command Generation Method for High-Speed and Precise Positioning of Positioning Stage (위치결정 스테이지의 고속 정밀 위치결정을 위한 입력성형명령 생성 기법)

  • Jang, Joon-Won;Park, Sang-Won;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.122-129
    • /
    • 2008
  • This paper deals with precise positioning of a high-speed positioning stage without inducing residual vibration by using an input shaping technique. Input shaping is well known to be a very effective tool for suppressing the residual vibration of flexible structures. However, the ordinary input shaping for positioning stages is designated mostly for velocity regulation, not for the residual vibration at the target position. The main difficulties in implementing input shaping along with precise positioning are the time delay caused by the servo system characteristics and the s-curve feature often employed in some motor controllers. This paper analyzes the dynamic responses of a single-mode-dominate stage system subjected to input shaping. A theoretical model is developed io investigate the nature of system. In order to overcome the difficulty, this paper proposes an improved input shaper based on modified command profile generation. The proposed method is proved effective through experiments and simulations.

A Study on Improving Indoor Positioning Accuracy Using Map Matching Algorithm (맵 매칭 알고리즘을 이용한 실내 위치 추정 정확도 개선에 대한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.50-55
    • /
    • 2023
  • Due to the unavailability of global positioning system (GPS) indoors, various indoor pedestrian positioning methods have been designed to estimate the position of the user using received signal strength (RSS) measurements from radio beacons, such as wireless fidelity (WiFi) access points and Bluetooth low energy (BLE) beacons. In indoor environments, radio-frequency (RF) signals are unpredictable and change over space and time because of multipath associated with reflection and refraction, shadow fading caused by obstacles, and interference among different devices using the same frequencies. Therefore, the outliers in the positional information obtained from the indoor positioning method based on RSS measurements occur often. For this reason, the performance of the positioning method can be degraded by the characteristics of the RF signal. To resolve this issue, a map-matching (MM) algorithm based on maximum probability (MP) estimation is applied to the indoor positioning method in this study. The MM algorithm locates the aberrant position of the user estimated by the positioning method within the limits of the adjacent pedestrian passages. Empirical experiments show that the positioning method can achieve higher positioning accuracy by leveraging the MM algorithm.

  • PDF

Design of Indoor Space Guidance System Using LiDAR and Camera on iPhone (iPhone의 LiDAR와 Camera를 이용한 실내 공간 안내를 위한 시스템 설계)

  • Junseok Jang;Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.1
    • /
    • pp.71-78
    • /
    • 2024
  • In indoor environments, since global positioning system (GPS) signals can be blocked by obstacles, such as building structure. the performance of GPS-based positioning methods can be degraded because of the loss of GPS signals. To solve this problem, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope, accelerometer, and magnetometer, have been proposed to enhance the positioning accuracy in indoor environments. IMU-based positioning methods can estimate the location of the user by calculating the velocity and heading angle of the user without the help of GPS. However, low-cost MEMS IMUs may lead to drift error and large bias. In addition, positioning errors in IMU-based positioning approaches can be caused by the irrelevant motion of the pedestrian. In this study, we propose an enhanced indoor positioning method that provides more reliable localization results by using the camera, light detection and right (LiDAR), and ARKit framework on the iPhone. Through reliable positioning results and augmented reality (AR) experiences, our indoor positioning system can provide indoor space guidance services.

  • PDF

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Study on Applying GPS Positioning Technique to Cannon Laying (GPS 측위기술의 포 방열 적용 연구)

  • 조정호;박종욱;박필호;임형철;최만수;권영철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.2
    • /
    • pp.52-59
    • /
    • 2001
  • In this paper, we have proposed a capability of applying Global Positioning System(GPS) to cannon laying. High precision GPS positioning can be used for measuring precise positions and angles. Therefore, we have tested on applying GPS positioning technique to measurement of positions and angles, which related to cannon laying. First of all, we have determined a GPS reference position using various positioning methods. Then we have carried out several tests that are process of taking corner angles between neighboring two vectors. Each vector can be calculated by post/real time positioning of two GPS antennas placed on the both ends of the howitzer. The Comer Angles from Post processing(CAP) are compared with the other Corner Angles from Real time positioning(CAR). As the results, we have an agreement between CAP and CAR within 0.25 mil average, 0.29 mil standard deviation. Finally, we have discussed about the capabilities and problems in artillery arrangement using GPS.

  • PDF

GNSS-UWB Hybrid Positioning System for Indoor and Outdoor Seamless Positioning (산업현장에서의 실내외 연속측위를 위한 GNSS-UWB 하이브리드 측위 시스템)

  • Yong Jun, Chang;Joung Wook, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.139-142
    • /
    • 2023
  • In this paper, we propose a GNSS-UWB hybrid positioning system for indoor and outdoor seamless positioning. Fusion of GNSS and inertial sensors has been widely used as a method for estimating positions in places where GNSS reception sensitivity is low, and UWB technology, which started as a short-range wireless communication technology, is widely used indoors where GNSS is completely blocked. This paper proposes a method of mutual correction and fusion of the location information collected through GNSS and the location information collected from the UWB indoor positioning system when indoor and outdoor work occurs continuously and repeatedly, such as in an industrial site.

A Trend Survey on Precision Positioning Technology for Drones (드론 정밀 측위 기술 동향)

  • J.H. Lee;J. Jeon;K. Han;Y. Cho;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

Indoor Position Technology in Geo-Magnetic Field (지구 자기장 기반의 Fingerprint 실내 위치추정 방법 연구)

  • Hur, Soojung;Song, Junyeol;Park, Yongwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.1
    • /
    • pp.131-140
    • /
    • 2013
  • Due to the limitations of the existing indoor positioning system depending on the radio wave, at present, it is required to introduce a new method in order to improve the accuracy in indoor environment. Recently, bio-inspired technology has become the future core technology. Thus, this study examined the accurate positioning method applying the abilities that animals with homing instinct measure their position by searching geomagnetic field with the use of their biomagnets. In order to confirm the applicability of geomagnetic field, a new source for indoor positioning, this study separated the constituent materials and building structure and designed the structures that can carry the actual magnetic field sensor and the data collection module. Subsequently, this study investigated the applicability of geomagnetic field as a positioning source by establishing the positioning system of Fingerprint method. In performance evaluation of the positioning system, the geomagnetic strength-based positioning system was similar to or approximately 20 percent higher than the wireless LAN-based positioning system in the buildings with the existing wireless LAN. Thus, in the environment without infrastructure for indoor positioning, the geomagnetic, an independent earth resource, can make it possible to realize the indoor positioning.

A Study on Enhancing Outdoor Pedestrian Positioning Accuracy Using Smartphone and Double-Stacked Particle Filter (스마트폰과 Double-Stacked 파티클 필터를 이용한 실외 보행자 위치 추정 정확도 개선에 관한 연구)

  • Kwangjae Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2023
  • In urban environments, signals of Global Positioning System (GPS) can be blocked and reflected by tall buildings, large vehicles, and complex components of road network. Therefore, the performance of the positioning system using the GPS module in urban areas can be degraded due to the loss of GPS signals necessary for the position estimation. To deal with this issue, various localization schemes using inertial measurement unit (IMU) sensors, such as gyroscope and accelerometer, and Bayesian filters, such as Kalman filter (KF) and particle filter (PF), have been designed to enhance the performance of the GPS-based positioning system. Among Bayesian filters, the PF has been widely used for the target tracking and vehicle navigation, since it can provide superior performance in estimating the state of a dynamic system under nonlinear/non-Gaussian circumstance. This paper presents a positioning system that uses the double-stacked particle filter (DSPF) as well as the accelerometer, gyroscope, and GPS receiver on the smartphone to provide higher pedestrian positioning accuracy in urban environments. The DSPF employs a nonparametric technique (Parzen-window) to create the multimodal target distribution that approximates the posterior distribution. Experimental results show that the DSPF-based positioning system can provide the significant improvement of the pedestrian position estimation in urban environments.

  • PDF