• 제목/요약/키워드: positioning fingerprint database

검색결과 16건 처리시간 0.858초

위치추정 전자지문기법을 위한 전파전달 모델 및 공간상관기법 기반의 효율적인 데이터베이스 생성 (Radio Propagation Model and Spatial Correlation Method-based Efficient Database Construction for Positioning Fingerprints)

  • 조성윤;박준구
    • 제어로봇시스템학회논문지
    • /
    • 제20권7호
    • /
    • pp.774-781
    • /
    • 2014
  • This paper presents a fingerprint database construction method for WLAN RSSI (Received Signal Strength Indicator)-based indoor positioning. When RSSI is used for indoor positioning, the fingerprint method can achieve more accurate positioning than trilateration and centroid methods. However, a FD (Fingerprint Database) must be constructed before positioning. This step is a very laborious process. To reduce the drawbacks of the fingerprint method, a radio propagation model-based FD construction method is presented. In this method, an FD can be constructed by a simulator. Experimental results show that the constructed FD-based positioning has a 3.17m (CEP) error. In this paper, a spatial correlation method is presented to estimate the NLOS(Non-Line of Sight) error included in the FD constructed by a simulator. As a result, the NLOS error of the FD is reduced and the performance of the error compensated FD-based positioning is improved. The experimental results show that the enhanced FD-based positioning has a 2.58m (CEP) error that is a reasonable performance for indoor LBS (Location Based Service).

Indoor 3D Dynamic Reconstruction Fingerprint Matching Algorithm in 5G Ultra-Dense Network

  • Zhang, Yuexia;Jin, Jiacheng;Liu, Chong;Jia, Pengfei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권1호
    • /
    • pp.343-364
    • /
    • 2021
  • In the 5G era, the communication networks tend to be ultra-densified, which will improve the accuracy of indoor positioning and further improve the quality of positioning service. In this study, we propose an indoor three-dimensional (3D) dynamic reconstruction fingerprint matching algorithm (DSR-FP) in a 5G ultra-dense network. The first step of the algorithm is to construct a local fingerprint matrix having low-rank characteristics using partial fingerprint data, and then reconstruct the local matrix as a complete fingerprint library using the FPCA reconstruction algorithm. In the second step of the algorithm, a dynamic base station matching strategy is used to screen out the best quality service base stations and multiple sub-optimal service base stations. Then, the fingerprints of the other base station numbers are eliminated from the fingerprint database to simplify the fingerprint database. Finally, the 3D estimated coordinates of the point to be located are obtained through the K-nearest neighbor matching algorithm. The analysis of the simulation results demonstrates that the average relative error between the reconstructed fingerprint database by the DSR-FP algorithm and the original fingerprint database is 1.21%, indicating that the accuracy of the reconstruction fingerprint database is high, and the influence of the location error can be ignored. The positioning error of the DSR-FP algorithm is less than 0.31 m. Furthermore, at the same signal-to-noise ratio, the positioning error of the DSR-FP algorithm is lesser than that of the traditional fingerprint matching algorithm, while its positioning accuracy is higher.

A Study of Multi-Target Localization Based on Deep Neural Network for Wi-Fi Indoor Positioning

  • Yoo, Jaehyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.49-54
    • /
    • 2021
  • Indoor positioning system becomes of increasing interests due to the demands for accurate indoor location information where Global Navigation Satellite System signal does not approach. Wi-Fi access points (APs) built in many construction in advance helps developing a Wi-Fi Received Signal Strength Indicator (RSSI) based indoor localization. This localization method first collects pairs of position and RSSI measurement set, which is called fingerprint database, and then estimates a user's position when given a query measurement set by comparing the fingerprint database. The challenge arises from nonlinearity and noise on Wi-Fi RSSI measurements and complexity of handling a large amount of the fingerprint data. In this paper, machine learning techniques have been applied to implement Wi-Fi based localization. However, most of existing indoor localizations focus on single position estimation. The main contribution of this paper is to develop multi-target localization by using deep neural, which is beneficial when a massive crowd requests positioning service. This paper evaluates the proposed multilocalization based on deep learning from a multi-story building, and analyses its learning effect as increasing number of target positions.

위치기반 서비스 강화를 위한 최적 데이터 필터링 기법 및 측위 시스템 적용 모델 (Optimal Fingerprint Data Filtering Model for Location Based Services)

  • 정준;김재훈
    • 경영과학
    • /
    • 제29권2호
    • /
    • pp.79-90
    • /
    • 2012
  • Focusing on the rapid market penetration of smart phones, the importance of LBS (Location Based Service) is drastically increased. However, traditional GPS method has critical weakness caused by limited availability, such as indoor environment. WPS is newly attractive method as a widely applicable positioning method. In WPS, RSSI (Received Signal Strength Indication) data of all Wi-Fi APs (Access Point) are measured and stored into a huge database. The stored RSSI data in database make single radio fingerprint map. By the radio fingerprint map, we can estimate the actual position of target point. The essential factor of radio fingerprint database is data integrity of RSSI. Because of millions of APs in urban area, RSSI measurement data are seriously contaminated. Therefore, we present the unified filtering method for RSSI measurement data. As the results of filtering, we can show the effectiveness of suggested method in practical positioning system of mobile operator.

WLAN 기반 실내 위치 측위에서 측위 정확도 향상을 위한 데이터 구축 방법 (Database Investigation Algorithm for High-Accuracy based Indoor Positioning)

  • 송진우;허수정;박용완;유국열
    • 대한임베디드공학회논문지
    • /
    • 제7권2호
    • /
    • pp.85-93
    • /
    • 2012
  • In this paper, we proposed Wireless LAN (WLAN) localization method that enhances database construction based on weighting factor and analyse the characteristic of the WLAN received signals. The weighting factor plays a key role as it determines the importance of Received Signal Strength Indication (RSSI) value from number of received signals (frequency). The fingerprint method is the most widely used method in WLAN-based positioning methods because it has high location accuracy compare to other indoor positioning methods. The fingerprint method has different location accuracies which depend on training phase and positioning phase. In training phase, intensity of RSSI is measured under the various. Conventional systems adapt average of RSSI samples in a database construction, which is not quite accurate due to variety of RSSI samples. In this paper, we analyse WLAN RSSI characteristic from anechoic chamber test, and analyze the causes of various distributions of RSSI and its influence on location accuracy in indoor environments. In addition, we proposed enhanced weighting factor algorithm for accurate database construction and compare location accuracy of proposed algorithm with conventional algorithm by computer simulations and tests.

DNN-based LTE Signal Propagation Modelling for Positioning Fingerprint DB Generation

  • Kwon, Jae Uk;Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.55-66
    • /
    • 2021
  • In this paper, we propose a signal propagation modeling technique for generating a positioning fingerprint DB based on Long Term Evolution (LTE) signals. When a DB is created based on the location-based signal information collected in an urban area, gaps in the DB due to uncollected areas occur. The spatial interpolation method for filling the gaps has limitations. In addition, the existing gap filling technique through signal propagation modeling does not reflect the signal attenuation characteristics according to directions occurring in urban areas by considering only the signal attenuation characteristics according to distance. To solve this problem, this paper proposes a Deep Neural Network (DNN)-based signal propagation functionalization technique that considers distance and direction together. To verify the performance of this technique, an experiment was conducted in Seocho-gu, Seoul. Based on the acquired signals, signal propagation characteristics were modeled for each method, and Root Mean Squared Errors (RMSE) was calculated using the verification data to perform comparative analysis. As a result, it was shown that the proposed technique is improved by about 4.284 dBm compared to the existing signal propagation model. Through this, it can be confirmed that the DNN-based signal propagation model proposed in this paper is excellent in performance, and it is expected that the positioning performance will be improved based on the fingerprint DB generated through it.

고정 태그 위치의 정확한 확인을 위한 시스템 구축에 관한 연구 (A Study on the Construction of System for Correct Location Determination of Fixed Tag)

  • 이두용;장정환;장청윤;조용철;이창호
    • 대한안전경영과학회지
    • /
    • 제14권1호
    • /
    • pp.209-215
    • /
    • 2012
  • This paper deals with the construction of system for correct location determination of fixed tag. We adapted to construct the above method. Also we adapted the several filtering method. This system was constructed through using of several filtering methods to decrease the location determination error and fingerprint method which is composed of training phase and positioning phase. We constructed this system using Labview 2010 and MS-SQL 2000 as database. This system results in less location determination error than least square method, triangulation positioning method, and other fingerprint methods.

반지도식 자기조직화지도를 이용한 wifi fingerprint 보정 방법 (Wifi Fingerprint Calibration Using Semi-Supervised Self Organizing Map)

  • 타이광퉁;정기숙;금창섭
    • 한국통신학회논문지
    • /
    • 제42권2호
    • /
    • pp.536-544
    • /
    • 2017
  • 무선 RSSI fingerprinting 방식은 기존 무선 인프라를 이용하면서 적정수준의 정확도를 얻을 수 있는 실내위치인식 방법 중의 하나이다. 하지만 라디오 맵 구성( fingerprint calibration) 과정에서 목표 환경의 다양한 위치에서 정확한 물리적 좌표와 무선 신호를 측정해야 하므로 시간과 노력이 많이 소요된다. 이 논문은 이러한 방식으로 위치 정보를 수집하지 않고 반지도식 자기조직화지도 학습 알고리즘을 사용하여 labeled RSSI를 얻고 RSSI 조합으로부터 맵을 구성하는 방법을 제안한다. 모의 데이터에 대한 실험을 통해 제안 방법이 fingerprint 데이터베이스로 부터 1%의 RSSI 샘플을 가지고 효과적인 전체 맵을 얻을 수 있다는 결론을 얻었다.

AP 주변 환경 정보를 이용한 WLAN 기반 실내 위치추정 알고리즘 (WLAN-based Indoor Positioning Algorithm Using The Environment Information Surround Access Points)

  • 김미경;신요순;박현주
    • 한국정보통신학회논문지
    • /
    • 제15권3호
    • /
    • pp.551-560
    • /
    • 2011
  • 최근 WLAN을 기반으로 하는 실내 위치추정 시스템에 대한 관심이 증가하고 있다. 대부분의 WLAN을 기반으로 하는 위치추정 시스템들은 fingerprinting 기법을 사용한다. fingerprinting 기법에서 이동객체의 위치정확도는 참조 점의 수에 비례한다. 하지만 참조 점의 수에 따라 training 단계에서 fingerprint 데이터베이스를 생성하기 위해 많은 시간과 노력을 요구한다. 이러한 문제점들을 해결하기 위해, 본 논문에서는 WLAN 기반 AP들의 주변 환경정보를 이용하여 AP와 이동 객체 간의 거리를 산출하여 위치를 추정하는 새로운 알고리즘을 제안하였으며, 이동 객체의 위치 정확도를 개선하기 위하여 제안 알고리즘에 파티클 필터를 적용하였다. 이 알고리즘을 구현하기 위하여 먼저 AP들의 주변에 존재하는 벽, 철문, 유리문, 파티션 등과 같은 환경 정보 데이터베이스를 구축하였고 위치 추정은 감쇠 모델과 경로 손실 모델을 이용하였다. 제안 알고리즘을 실험을 통하여 확인한 결과 위치 정확도는 낮았지만 fingerprinting의 문제점을 해결하였다.

Unlabeled Wi-Fi RSSI Indoor Positioning by Using IMU

  • Chanyeong, Ju;Jaehyun, Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제12권1호
    • /
    • pp.37-42
    • /
    • 2023
  • Wi-Fi Received Signal Strength Indicator (RSSI) is considered one of the most important sensor data types for indoor localization. However, collecting a RSSI fingerprint, which consists of pairs of a RSSI measurement set and a corresponding location, is costly and time-consuming. In this paper, we propose a Wi-Fi RSSI learning technique without true location data to overcome the limitations of static database construction. Instead of the true reference positions, inertial measurement unit (IMU) data are used to generate pseudo locations, which enable a trainer to move during data collection. This improves the efficiency of data collection dramatically. From an experiment it is seen that the proposed algorithm successfully learns the unsupervised Wi-Fi RSSI positioning model, resulting in 2 m accuracy when the cumulative distribution function (CDF) is 0.8.