• Title/Summary/Keyword: positioning control

Search Result 1,160, Processing Time 0.034 seconds

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Design and control of the precision heat actuator using thermoelectric device (열전소자를 이용한 정밀 열구동기구의 설계 및 제어)

  • 서장렬;김선민;이선규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.395-398
    • /
    • 1997
  • In the modem manufacturing system, to achieve the unmanned automation, the stability of accuracy is required through a long working period. The thermal deformation of precision machine is predominant in this long time stability. While grinding slender and long workpiece at cylindrical grinding machine, we support workpiece using steadies to prevent the vibration of workpiece. The thermal deformation of the machine by grinding and internal heat source cause processing errors, so the steadies for compensating the thermal deformation in real time are strongly needed. In order to compensate these thermal deformation and grinding processing errors, the device to determine the precise positioning having the stroke of 10.mu.m is necessary. This paper suggests design and make the device to determine the precise positioning using thermoelectric device, to investigate the control characteristics and presents the heat actuator will be very useful in machine tool.

  • PDF

A Study on the Detection Algorithm of an Advanced Ultrasonic Signal for Hydro-acoustic Releaser

  • Kim, Young-Jin;Huh, Kyung-Moo;Cho, Young-June
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.767-775
    • /
    • 2008
  • Methods used for exploring marine resources and spaces include positioning a probe under water and then recalling it after a specified time. Hydro-acoustic Releasers are commonly used for positioning and retrieving of such exploration equipment. The most important factor in this kind of system is the reliability for recalling the instruments. The frequently used ultrasonic signal detection method can detect ultrasonic signals using a fixed comparator, but because of increased rates of errors due to outside interferences, information is repetitively acquired. This study presents an effective ultrasonic signal detection algorithm using the characteristics of a resonance and adaptive comparator Combined with the FSK+ASK modulator. As a result, approximately 8.8% of ultrasonic wave communication errors caused by background noise and transmission losses were reduced for effectively detecting ultrasonic waves. Furthermore, the resonance circuit's quality factor was enhanced (Q = 120 to 160). As such, the bias voltage of the transistor (Vb= 3.3 to 6.8V) was increased thereby enhancing the frequency's selectivity.

Development of an Autonomous Navigation System for Unmanned Ground Vehicle

  • Kim, Yoon-Gu;Lee, Ki-Dong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.3 no.4
    • /
    • pp.244-250
    • /
    • 2008
  • This paper describes the design and implementation of an unmanned ground vehicle (UGV) and also estimates how well autonomous navigation and remote control of UGV can be performed through the optimized arbitration of several sensor data, which are acquired from vision, obstacle detection, positioning system, etc. For the autonomous navigation, lane detection and tracing, global positioning, and obstacle avoidance are necessarily required. In addition, for the remote control, two types of experimental environments are established. One is to use a commercial racing wheel module, and the other is to use a haptic device that is useful for a user application based on virtual reality. Experimental results show that autonomous navigation and remote control of the designed UGV can be achieved with more effectiveness and accuracy using the proper arbitration of sensor data and navigation plan.

  • PDF

Development of Realtime Monitoring System for Automatic GAS Control (자동 가스 조절용 전동밸브의 실시간 모니터링 시스템 개발)

  • 조현섭;유인호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.45-48
    • /
    • 2001
  • It is a quite duality concerning to control the temperature of single crystalline growth as it does when we get most of heat treating products. It is also important factor to control the temperature when we make the $Al_2$O$_3$(single crystalline) used to artificial jewels. glass of watches, and heat resistant transparent g1asses. Thus, it is a major interest to get the proper temperature in accordance with the time process while we are making mixture of oxygen and hydrogen to have the right temperature. In this paper. we will study of electrical valve positioning system with DC-Motor for the gas mixture to improve the quality of products.

  • PDF

A Study on the Intelligent Position Control System Using Sliding Mode and Friction Observer (슬라이딩 모드와 마찰관측기를 이용한 강인한 지능형 위치 제어시스템 연구)

  • Han, Seong-Ik;Lee, Yong-Jin;Lee, Kwon-Soon;Nam, Hyun-Do
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.2
    • /
    • pp.163-172
    • /
    • 2010
  • A robust positioning control system has been studied using a friction parameter observer and a recurrent fuzzy neural network based on the sliding model. To estimate a nonlinear friction parameters of the LuGre friction model, a dual friction model-based observer is introduced. In addition, an approximating method for a system uncertainty has been developed using a recurrent fuzzy neural network technique to improve positioning performance. Experimental results have been presented to validate the performance of a proposed intelligent compensation scheme.

Vehicle Simulator and it's Lateral Control by the Dead-Reckoning Positioning

  • Song, Hyo-Shin;Park, Ju-Yong;Eum, Sang-In;Ha, Seong-Ki;Bae, Jong-Il;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.101.5-101
    • /
    • 2002
  • A vehicle simulator is made here to simulate the lateral control of vehicles. Dead-reckoning sensors which consist of gyroscopes and accelerometers are utilized for the positioning of it. A significant side-slip occurs when the developed vehicle is drove autonomously. To cope with the side-slip, the vehicle is steered to follow the reference yaw rate which is generated by the relationship between the target point and the position of vehicle. The experimental results show the good performances of lane tracking and the passenger comfort.

  • PDF

Development of Adaptive RCC Mechanism Using Double-Actuator Units (여자유도 액츄에이터를 이용한 능동RCC 장치의 개발)

  • Lim, Hyok-Jin;Kim, Byeong-Sang;Kang, Byung-Duk;Song, Jae-Bok;Park, Shin-Suk
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.168-177
    • /
    • 2007
  • In a number of fields, robots are being used for two purposes: efficiency and safety. Most robots, however, have single-actuator mechanism for each joint, where the tasks are performed with high stiffness. High stiffness causes undesired problems to the environment and robots. This study proposes redundant actuator mechanism as an alternative idea to cope with these problems. In this paper, Double-Actuator Unit (DAU) is implemented at each joint for applications of multi-link manipulators. The DAU is composed of two motors: the positioning actuator and the stiffness modulator, which enables independent control of positioning and compliance. A three-link manipulator with DAUs enables adaptive control of RCC. By modulating the joint stiffness of the manipulator and controlling the position of RCC, we can significantly reduce contact force during assembly tasks and surgical procedures.

  • PDF

Friction Compensation Scheme using a Fuzzy Logic (퍼지논리를 이용한 마찰력 보상에 관한 연구)

  • Cho, Y.D.;Yang, S.S.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.679-681
    • /
    • 1995
  • In this paper, a friction compensation scheme using a fuzzy logic is presented. For the precision positioning and tracking control, the proper friction compensation is essential. Friction compensation schemes based on velocity and controlling input or desired velocity, have limitations because the compensation values are fixed. In this paper, a fuzzy friction compensation scheme adjusts the compensation value depending on the velocity and the position error. The proposed fuzzy friction compensator is implemented in a linear positioning system. The performance is illustrated by simulations and experiments.

  • PDF

A Study on the Active Control of Air Bearing (공기베어링의 능동제어에 관한 연구)

  • Lee, Jeong-Bae;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2501-2507
    • /
    • 1996
  • In this paper actively controlled air bearing is investigated to overcome the defects of air bearing such as low stiffness and damping coefficients. The actively controlled air beairng is composed of an air bearing, a gap sensor, a controller, and a piezo actuator. By controlling the position of air bearing with piezo actuator, the position of floating object is controlled. In this study the proportional-Integral-Derivative controller is employed. Active air bearing is investigated numerically and experimentally. There is good agreement between the simulation and the experimental results. It is shown that the stiffness and damping characteristics and positioning experimental results. It is shown that the stiffness and damping characteristics and positioning accuracy of air bearing can be improved by means of adopting actively controlled air bearing.