• Title/Summary/Keyword: positional cloning

Search Result 28, Processing Time 0.039 seconds

Molecular Cloning and Characterization of Bovine HMGA1 Gene

  • Yu, S.L.;Chung, H.J.;Sang, B.C.;Bhuiyan, M.S.A.;Yoon, D.;Kim, K.S.;Jeon, J.T.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.11
    • /
    • pp.1662-1669
    • /
    • 2007
  • The high mobility group AT-hook1 (HMGA1) proteins are known to be related to the regulation of gene transcription, replication and promotion of metastatic progression in cancer cells. The loss of expression by disrupting the HMGA1 gene affects insulin signaling and causes diabetes in the mouse. Previously identified single nucleotide polymorphism (SNP) of HMGA1 was significantly associated with fat deposition traits in the pig. In this study, we identified 3,935 bp nucleotide sequences from exon 5 to exon 8 of the bovine HMGA1 gene and its mRNA expression was observed by quantitative real-time PCR. Six single nucleotide polymorphisms in the bovine HMGA1 gene were detected and the allele frequencies of these SNPs were investigated using the PCR-RFLP method in nine cattle breeds including Limousin, Simmental, Brown Swiss, Hereford, Angus, Charolais, Hanwoo, Brahman and Red Chittagong cattle. The map location showed that the bovine HMGA1 gene was also closely located with a previously identified meat quality QTL region indicating this gene is the most likely positional candidate for meat quality traits in cattle.

A Case of Wiskott-Aldrich Syndrome with Novel Mutation in Exon 2 of the WASP Gene (WASP 유전자의 Exon 2에서 새로운 돌연변이를 가진 Wiskott-Aldrich 증후군의 1례)

  • Lee, Hyuk;Park, Jung-In;Kim, Sun Young;Moon, Kyeung Hee;Yi, Ho Keun;Hwang, Pyeong Han
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.5
    • /
    • pp.551-556
    • /
    • 2005
  • Wiskott-Aldrich syndrome(WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia with small platelet volume, eczema, and recurrent infections, and is also characterized by increased incidence of auto immune diseases and malignancies. The phenotype observed in this syndrome is caused by mutation in the Wiskott-Aldrich syndrome protein(WASP) gene localized to the proximal short arm of the X chromosome and recently isolated through positional cloning. The gene encodes a 502 amino acid protein, which contains 12 exons and spans 9 kb of genomic DNA. The function of the encoded protein is not well understood. The clinical diagnosis of WAS can be difficult and is usually confirmed by the detection of WASP gene mutations and the expression of WSAP in patient blood sample using genetic analysis. We reported a case of a 13-month old boy with WAS who was identified with the novel mutation in exon 2 of WASP gene by direct sequencing and the complete absence of WASP expression by immunoblotting.

Identification of Molecular Markers for Photoblastism in Weedy Rice

  • Lee, Hyun-Sook;Ahn, Sang-Nag;Sasaki, Kazuhiro;Chung, Nam-Jin;Choi, Kwan-Sam;Sato, Tadashi
    • Korean Journal of Breeding Science
    • /
    • v.42 no.2
    • /
    • pp.144-150
    • /
    • 2010
  • The objective of this study was to map gene/QTL for photoblastism in a weedy rice (photoblastic rice: PBR) using DNA markers. Light-induced effect on germination of seeds was compared among three accessions (Oryza sativa L.), PBR, Milyang 23 and Ilpum. Results showed that PBR seeds started to show photoblastism during seed development, different from Ilpum and Milyang 23. Frequency distribution of germination in the F4 lines from crosses between Ilpum and PBR and, Milyang 23 and PBR revealed bimodal distributions suggesting that photoblastism was controlled by a few genes. Bulked segregant analysis using $F_4$ populations derived from the above two crosses was conducted to identify gene/QTL for photoblastism. Two QTL were identified on chromosomes 1 and 12 explaining 11.2 and 12.8% of the phenotypic variance, respectively. Two QTL were further mapped between two SSR markers, RM8260 and RM246 on chromosome 1, and between RM270 and 1103 on chromosome 12. It is noteworthy that two QTL for photoblastism were colocalized with the QTL for seed dormancy reported in the previous QTL studies. The clustering of two genes for photoblastism and dormancy possibly indicates that these regions constitute rice phytochrome gene clusters related to germination. Because PBR has a low degree of dormancy, a pleiotropic effect of a single gene controlling dormancy and photoblastism can be ruled out. The linked markers will provide the foundation for positional cloning of the gene.

Development of the pyramiding lines with strong culm genes derived from crosses among the SCM near isogenic lines in rice

  • Ookawa, Taiichiro;Kamahora, Eri;Ebitani, Takeshi;Yamaguchi, Takuya;Murata, Kazumasa;Iyama, Yukihide;Ozaki, Hidenobu;Adachi, Shunsuke;Hirasawa, Tadashi;Kanekatsu, Motoki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.21-21
    • /
    • 2017
  • Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci (QTLs) and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To identify QTLs for lodging resistance, the tropical japonica line, Chugoku 117 and the improved indica variety, Habataki were selected as the donor parent, as these had thick and strong culms compared with the temperate japonica varieties in Japan such as Koshihikari. By using chromosome segment substitution lines (CSSLs) in which chromosome segments from the japonica variety were replaced to them from Habataki, we identified the QTLs for strong culm on chrs. 1 and 6, which were designated as STRONG CULM1 (SCM1) and STRONG CULM2 (SCM2), respectively. By using recombinant inbred lines (BILs) derived from a cross between Chugoku 117 and Koshihikari and introgression lines, we also identified the other QTLs for strong culm on chrs. 3 and 2, which were designated as STRONG CULM3 (SCM3) and STRONG CULM4 (SCM4), respectively. Candidate region of SCM1 includes Gn1 related to grain number. SCM2 was identical to APO1, a gene related to the control of panicle branch number, and SCM3 was identical to FC1, a strigolactone signaling associated gene, by performing fine mapping and positional cloning of these genes. To evaluate the effects of SCM1~SCM4 on lodging resistance, the Koshihiakri near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of Habataki (NIL-SCM1, NIL-SCM2) and the another Koshihikari NIL with the introgeressed SCM3 or SCM4 locus of Chugoku 117 (NIL-SCM3, NIL-SCM4) were developed. Then, we developed the pyramiding lines with double or triple combinations derived from step-by-step crosses among NIL-SCM1 NIL-SCM4. Triple pyramiding lines (NIL-SCM1+2+3, ~ NIL-SCM1+3+4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.

  • PDF

Development of Microsatellite Markers using BAC clone Sequencing on Porcine Chromosome 6q28 - 6q32 (돼지 6번 염색체(6q28 - 6q32)의 BAC clone 염기서열 분석에 의한 Microsatellite Markers 개발)

  • Chang, K.W.;Lee, K.T.;Park, E.W.;Choi, B.H.;Kim, T.H.;Cheong, I.C.;Oh, S.J.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.301-306
    • /
    • 2004
  • This study was conducted to develop new markers at the region that was related to QTL affecting intramuscular fat and backfat thickness on chromosome 6q28 - 6q32 in pigs. Dozens of repeated sequences were founded using shotgun sequencing of several BAC clones corresponding to that region, of which five new microstellite markers that identified polymorphism were discovered. The mean number of alleles at each locus observed 2.13(KP0290F2), 4.63(KP0248Cll), 7.38(KP1231C91), 2.75(KPI23IC92) and 6.2S(KP1231C93) in 8 breeds(Landrace, Korean native pig, Duroc, Yorkshire, Berkshire, Wuzhishan pig, Xiang pig, Min pig). The average estimated heterozygosity values at each locus varied from 0.2100(KP0290F2) to 0.8304(KPI23IC91) in all populations. In other hand, the average allele of all loci WlL'I within range of 0.4517(Berkshire) and 0.6957 (Yorkshire). Of these markers, KP0248C11, KP1231C91 and KP1231C93 were identified to have optimal number of alleles, high heterozygosity values and low standard deviation values. Especially, KPI23IC91 and KPI231C93 might be considered as a useful marker for genetic mapping and diversity study.

Identification of Tumor Suppressor Loci on the Long Arm of Chromosome 5 in Primary Small Cell Lung Cancers (원발성 소세포폐암에서 염색체 5번의 장완에 위치한 종양억제유전자좌의 확인)

  • Cho, Eun-Song;Kim, Ho-Guen;Cho, Chul-Ho;Chang, Joon;Chung, Kyung-Young;Kim, Young-Sam;Park, Jae-Min;Kim, Sung-Kyu;Kim, Se-Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.1
    • /
    • pp.49-59
    • /
    • 2000
  • Backgrounds : Recent cytogenetic studies indicated that long of the long arm of chromosome 5 is a frequent event in small cell lung canær (SCLC), suggesting the presence of a tumor suppressor gene in its place. To map the precise tumor-suppressor loci on the chromosome arm for further positional cloning efforts, we tested 15 primary SCLCs. Methods : The DNAs extracted from paraffin-embedded tissue blocks with primary tumor and corresponding control tissue were investigated. Nineteen polymorphic microsatellite markers located in the long arm of chromosome 5 were used in the microsatellite analysis. Results : We found that ten (66.7%) of 15 tumors exhibited LOH in at least one of tested microsatellite markers. Two (13%) of 10 tumors exhibiting LOH lost a larger area in chromosome 5q. LOH was observed in five common deleted regions at 5q. Among those areas, LOH between 5q34-qter and 5q35.2-35.3 was most frequent (75%). LOH was also observed in more than 50% of the tumors at four other regions, between 5q14-15 and 5q23-31, 5q31.1, 5q31.3-33.3, and 5q34-35. Three of 15 tumors exhibited shifted bands in at least one of the tested microsatellite markers. Shifted bands occurred in 2.5% (7 of 285) of the loci tested. Conclusion : Our data demonstrated that at least five tumor-suppressor loci exist in the long arm of chromosome 5 and that they may play an important role in small cell lung cancer tumorigenesis.

  • PDF

Improvement of Selection Efficiency for Bacterial Blight Resistance Using SNP Marker in Rice (SNP 마커를 이용한 벼 흰잎마름병 저항성 선발 효율 증진)

  • Shin, Woon-Chul;Baek, So-Hyeon;Seo, Chun-Sun;Kang, Hyeon-Jung;Kim, Chung-Kon;Shin, Mun-Sik;Lee, Gang-Seob;Hahn, Jang-Ho;Kim, Hyun-Soon
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.309-313
    • /
    • 2006
  • Discovery of single nucleotide polymorphisms (SNPs), including small insertions and deletions, is one of the hot topics in genetic research. The most common type of sequence variant consists of single base differences or small insertions and deletions at specific nucleotide positions. Significance of SNPs in rice is increasing for genetic research, positional cloning and molecular breeding. $F_2$ 170 lines and $F_3$ 194 lines derived from Sangjuchalbyeo/HR13721-53-3-1-3-3-2-2 Were used for Searching SNP markers related to bacterial blight resistance. Sangjuchalbyeo is susceptible to bacterial blight, but HR13721-53-3-1-3-3-2-2 has Xa1 gene resistant to bacterial blight. Individual lines were inoculated with $K_1$ race of bacterial blight and resistant or susceptible was evaluated after 3 weeks from inoculation. The genotypes of population were analysed by PCR-RFLP for SNP marker developing. The segregation of $F_2\;and\;F_3$ population showed almost 3:1, 1:1 ratio, respectively. Analysis of genotype using SNP marker is capable of confirming resistance for $K_1$ race and genotype through amplifying the gene using 16PFXal primer and digested the PCR product with Eco RV. There were close relation between resistance test for $K_1$ race and SNP marker genotype. Especially, DNA analysis using SNP marker is capable of judging homozygote/heterozygote in $F_2$ population compared with resistant test for Kl race. So, it seems to improve the selection efficiency in disease resistant breeding.

Identification of Tumor Suppressor Loci on the Short Arm of Chromosome 16 in Primary Small Cell Lung Cancers (원발성 소세포폐암에서 염색체 16번의 단완에 위치한 종양억제유전자좌의 확인)

  • Kee, Hyun Jung;Shin, Ju Hye;Chang, Joon;Chung, Kyung Young;Shin, Dong Hwan;Kim, Young Sam;Chang, Yoon Soo;Kim, Sung Kyu;Kwak, Seung Min;Kim, Se kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.597-611
    • /
    • 2003
  • Background : Loss of the short arm of chromosome 16 is a frequent event in various cancers, which suggests the presence of tumor suppressor gene(s) there. To map precise tumor suppressor loci on the chromosome arm for further positional cloning efforts, we tested 23 primary small cell lung cancers. Method : The DNAs extracted from paraffin embedded tissue blocks with primary tumor and corresponding control tissue were investigated. Twenty polymorphic microsatellite markers located in the short arm of chromosome 16 were used in the microsatellite analysis. Results : We found that six (26.1%) of 23 tumors exhibited LOH in at least one of tested microsatellite markers. Two (8.7%) of 6 tumors exhibiting LOH lost a larger area in chromosome 16p. LOH was observed in five common deleted regions at 16p. Among those areas, LOH between D16S668 and D16S749 was most frequent (21.1%). LOH was also observed at four other regions, between D16S3024 and D16S748, D16S405, D16S420, and D16S753. Six of 23 tumors exhibited shifted bands in at least one of the tested microsatellite markers. Shifted bands occurred in 3.3% (15 of 460) of the loci tested. Conclusion : Our data demonstrated that at least five tumor suppressor loci might exist in the short arm of chromosome 16 and that they may play an important role in small cell lung cancer tumorigenesis.