• Title/Summary/Keyword: positional accuracy

Search Result 244, Processing Time 0.024 seconds

The Positional Accuracy Quality Assessment of Digital Map Generalization (수치지도 일반화 위치정확도 품질평가)

  • 박경식;임인섭;최석근
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.2
    • /
    • pp.173-181
    • /
    • 2001
  • It is very important to assess spatial data quality of a digital map produced through digital map generalization. In this study, as a aspect of spatial data quality maintenance, we examined the tolerate range of theoretical expectation accuracy and established the quality assessment standard in spatial data for the transformed digital map data do not act contrary to the digital map specifications and the digital map accuracy of the relational scale. And, transforming large scale digital map to small scale, if we reduce complexity through processes as simplification, smoothing, refinement and so on., the spatial position change may be always happened. thus, because it is very difficult to analyse the spatial accuracy of the transformed position, we used the buffering as assessment method of spatial accuracy in digital map generalization procedure. Although the tolerated range of generic positioning error for l/l, 000 and l/5, 000 scale is determined based on related law, because the algorithms adapted to each processing elements have different property each other, if we don't determine the suitable parameter and tolerance, we will not satisfy the result after generalization procedure with tolerated range of positioning error. The results of this study test which is about the parameters of each algorithm based on tolerated range showed that the parameter of the simplification algorithm and the positional accuracy are 0.2617 m, 0.4617 m respectively.

  • PDF

Three-dimensional assessment of upper lip positional changes according to simulated maxillary anterior tooth movements by white light scanning

  • Kim, Hwee-Ho;Lee, Jin-Woo;Cha, Kyung-Suk;Chung, Dong-Hwa;Lee, Sang-Min
    • The korean journal of orthodontics
    • /
    • v.44 no.6
    • /
    • pp.281-293
    • /
    • 2014
  • Objective: Esthetic improvements during orthodontic treatment are achieved by changes in positions of the lips and surrounding soft tissues. Facial soft-tissue movement has already been two-dimensionally evaluated by cephalometry. In this study, we aimed to three-dimensionally assess positional changes of the adult upper lip according to simulated maxillary anterior tooth movements by white light scanning. Methods: We measured changes in three-dimensional coordinates of labial landmarks in relation to maxillary incisor movements of normal adults simulated with films of varying thickness by using a white light scanner. Results: With increasing protraction, the upper lip moved forward and significantly upward. Labial movement was limited by the surrounding soft tissues. The extent of movement above the vermilion border was slightly less than half that of the teeth, showing strong correlation. Most changes were concentrated in the depression above the upper vermilion border. Labial movement toward the nose was reduced significantly. Conclusions: After adequately controlling several variables and using white light scanning with high reproducibility and accuracy, the coefficient of determination showed moderate values (0.40-0.77) and significant changes could be determined. This method would be useful to predict soft-tissue positional changes according to tooth movements.

Tolerance design of position accuracy of optical components for micro optical system (마이크로 광 시스템 구현을 위한 광학 부품의 위치 정밀도 허용오차 설계)

  • 이재영;황병철;박헌용;박세근;이승걸;오범환;이일항;최두선
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.7
    • /
    • pp.13-20
    • /
    • 2004
  • In order to set up the design of micro optical bench, optical coupling efficiencies of two sets of test benches are calculated. Simple linear connections of incoming and outgoing optical fibers with and without ball lenses are designed. Positional errors that are possible in actual fabrication processes we considered in the calculations and their tolerances are determined from -3 ㏈ conditions. For a simple fiber-to-fiber connection, the lateral misalignment should be limited to 2.7 um and tilt error 5.8o. In case of the fiber-to-fiber with ball lens, the working distance between fibers can be extended over 60 um. The optical coupling efficiency depends strongly on the positional errors of ball lenses along the optical axis, and it is also found that the lateral and vertical positional errors should be considered simultaneously in order to keep the high coupling efficiency.

Methodology of Calibration for Falling Objects Accident-Risk-Zone Approach Detection Algorithm at Port Considering GPS Errors (GPS 오차를 고려한 항만 내 낙하물 사고위험 알고리즘 보정 방법론 개발)

  • Son, Seung-Oh;Kim, Hyeonseo;Park, Juneyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.61-73
    • /
    • 2020
  • Real-time location-sensing technology using location information collected from IoT devices is being applied for safety management purposes in many industries, such as ports. On the other hand, positional error is always present owing to the characteristics of GPS. Therefore, accident-risk detection algorithms must consider positional error. This paper proposes an methodology of calibration for falling object accident-risk-zone approach detection algorithm considering GPS errors. A probability density function was estimated, with positional error data collected from IoT devices as a probability variable. As a result of the verification, the algorithm showed a detection accuracy of 93% and 77%. Overall, the analysis results derived according to the GPS error level will be an important criterion for upgrading algorithms and real-time risk managements in the future.

The Versatility of Cervical Vertebral Segmentation in Detection of Positional Changes in Patient with Long Standing Congenital Torticollis

  • Hussein, Mohammed Ahmed;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.28-32
    • /
    • 2016
  • Background Congenital muscular torticollis (CMT) is a benign condition. With early diagnosis and appropriate management, it can be cured completely, leaving no residual deformity. However, long-standing, untreated CMT can lead to permanent craniofacial deformities and asymmetry.Methods Nineteen patients presented to the author with congenital muscular torticollis. Three dimensional computed tomography (3-D CT) scans was obtained upon patient’s admission. Adjustment of skull’s position to Frankfort horizontal plan was done. Cervical vertebral segmentation was done which allowed a 3D module to be separately created for each vertebra to detect any anatomical or positional changes.Results The segmented vertebrae showed an apparent anatomical changes, which were most noticeable at the level of the atlas and axis vertebrae. These changes decreased gradually till reaching the seventh cervical vertebra, which appeared to be normal in all patients. The changes in the atlas vertebra were mostly due to its intimate relation with the skull base, while the changes of the axis were the most significantConclusion Cervical vertebral segmentation is a reliable tool for isolation and studying cervical vertebral pathological changes of each vertebra separately. The accuracy of the procedures in addition to the availability of many software that can be used for segmentation will allow many surgeons to use segmentation of the vertebrae for diagnosis and even for preoperative simulation planning.

A Study on the Analysis of Application of Non-metric Camera to Accident Sites (비측량용 사진기를 이용한 사고현장 적용 해석에 관한 연구)

  • Yeu, Bock Mo;Kim, In Sup;Cho, Gi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.121-131
    • /
    • 1991
  • This study is about the analysis of the application of non-metric camera to accident sites and aims to present an efficient, an economical and an accurate method of processing accident sites. This was accomplished by observation and accuracy analysis of an experimental model. It can be concluded that by applying the 3-D coordinate system and the bundle adjustment with additional parameters to non-metric cameras, it is possible to achieve an accuracy level of positional values which is similar to that achieved by conventional control surveying and by metric cameras. It was also found that the accuracy of absolute coordinates approached towards the accuracy of metric cameras with the increase of the film size and with the increase of the focal length of the non-metric camera.

  • PDF

A Novel Method for Improving the Positioning Accuracy of a Magnetostrictive Position Sensor Using Temperature Compensation (온도 보상을 이용한 자기변형 위치 센서의 정확도 향상 방법)

  • Yoo, E.J.;Park, Y.W.;Noh, M.D.
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.414-419
    • /
    • 2019
  • An ultrasonic based magnetostrictive position sensor (MPS) provides an indication of real target position. It determines the real target position by multiplying the propagation speed of ultrasonic wave and the time-of-flight between the receiving signals; one is the initial signal by an excitation current and the other is the reflection signal by the ultrasonic wave. The propagation speed of the ultrasonic wave depends on the temperature of the waveguide. Hence, the change of the propagation speed in various environments is a critical factor in terms of the positioning accuracy in the MPS. This means that the influence of the changes in the waveguide temperature needs to be compensated. In this paper, we presents a novel way to improve the positioning accuracy of MPSs using temperature compensation for waveguide. The proposed method used the inherent measurement blind area for the structure of the MPS, which can simultaneously measure the position of the moving target and the temperature of the waveguide without any additional devices. The average positional error was approximately -23.9 mm and -1.9 mm before and after compensation, respectively. It was confirmed that the positioning accuracy was improved by approximately 93%.

A Study on the Motion Analysis and Lead-Filter Design for High Speed/Accuracy Movement of Gantry Robot (갠트리 로봇의 고속/고정밀 이송을 위한 모션분석 및 앞섬필터 설계)

  • Kim, Jin-Dae;Cho, Che-Seung;Lee, Hyuk-Jin;Shin, Chan-Bai;Park, Chul-Hu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.31-37
    • /
    • 2011
  • Recently gantry-type robot with 3 axes rectangular coordinates have been studied in the many industrial production equipment and machinery fields. To acquire a good handling and motion performance of this robot, reducing the settling-time and securing the accurate-transfer positioning under high-speed conditions should be required. However when robot is moved in high-speed, the large inertia of robot can lead to serious vibration of robot's head. The time-delayed control characteristics of this robot can also lead to tracking error. In this research, the analysis of the effects of higher order positional-profile is carried out to assure high-speed performance and stiffness specifications. To remove the residual vibration caused by kinematic coupling effect of dual-servo gantry, we develop a dual-servo gantry of rotary type that moving frame of x-axis rotates about z-axis. In order to decrease the tracking error, the 3 type lead-filter through system identification was applied respectively. From the experimental results, it was shown that zero-order series leader-filter has the best performance about tracking error and settling time.

QA of a stereotactic radiosurgery system for clinical application (정위방사선수술 시스템의 임상 적용을 위한 QA)

  • 조병철;오도훈;배훈식
    • Progress in Medical Physics
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • We developed a sterotactic radiosurgery system which is comprised of 1) collimators with small circular aperture, 2) an angiographic target localizer, 3) a target localizer used for alignment of planned target position with isocenter of treatment machine, and 4) a treatment planning system named LinaPel. In this study, we performed a series of treatment simulations to specify and analyze geometrical errors contained our in-house radiosurgery system. As results, 1) using Geometrical Phantom(Radionics,USA), the accuracy of target localization by LinaPel was determined as Avg. =(equation omitted) the accuracy of mechanical isocenter was found out to be 0.6 $\pm$ 0.2 mm, 3) the positional difference of target localization which determined by CT and angiography was 0.8 mm, and their size difference was 1.5 mm, and 4) the positional error during whole treatment was found out to be 0.9 $\pm$ 0.3 mm. With these results, we concluded that our in-house radiosurgery system can be used clinically. However, these range of accuracies need periodical quality assurance strongly.

  • PDF

Positional Accuracy Analysis of Permanent GPS Sites Using Precise Point Positioning (정밀절대측위를 이용한 상시관측소 위치정확도 분석)

  • Kang, Joon-Mook;Lee, Yong-Wook;Kim, Min-Gyu;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.529-536
    • /
    • 2008
  • Researches about 3-D Positioning system using GPS were carried out many-sided by national organs, laboratories, the worlds of science. And most of researches were development of relative positioning algorithm and its applications. Relative positioning has a merit, which can eliminate error in received signals. But its error increase due to distance of baseline. GPS absolute positioning is a method that decides the position independently by the signals from the GPS satellites which are received by a receiver at a certain position. And it is necessary to correct various kinds of error(clock error, effect of ionosphere and troposphere, multi-path etc.). In this study, results of PPP(Precise Point Positioning) used Bernese GPS software was compared with notified coordinates by the NGII(National Geographic Information Institute) in order to analyze the positional accuracy of permanent GPS sites. And the results were compared with results of AUSPOS - Online GPS Processing Service for comparison with relative positioning.