• Title/Summary/Keyword: position type fuzzy controller

Search Result 27, Processing Time 0.028 seconds

Weighted fuzzy controller composed of position type fuzzy controller and velocity type fuzzy controller (위치형퍼지제어기와 속도형퍼지제어기로 구성된 퍼지 가중치 제어기)

  • 김병수;박준열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.181-183
    • /
    • 1996
  • Generally, While position type fuzzy controller has good performance in transient period, it has uniform steady state error of response. While velocity type fuzzy controller is capable of reducing steady state error of response, it is hard to develop the performance in transient period. In order to have both good performance in transient period and ability to reduce the steady state error of response, weighting fuzzy controller, which is composed of these two fuzzy controllers, is proposed. For the decision of weight to each fuzzy controller, Weighting fuzzy set is established according to the system state variables and applied to each fuzzy controller. The proposed weighted fuzzy controller has the merits of both position type fuzzy controller and velocity type fuzzy controller simultaneously.

  • PDF

Position-type fuzzy controller using the accumulated error scaling factor (누적오차 조정계수를 이용한 위치형 퍼지제어기)

  • 김동하;전해진;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.177-177
    • /
    • 2000
  • In this paper, we propose a two-input two-output fuzzy controller to improve the performance of transient response and to eliminate the steady state error. The outputs of this controller are the control input calculated by position-type fuzzy controller and the accumulated error scaling factor. Here, the accumulated error scaling factor is adjusted on-line by fuzzy rules according to the current trend of the controlled process. To show the usefulness of the proposed controller, it is applied to several systems that are difficult to get satisfactory response by conventional PD controllers or PI controllers.

  • PDF

The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms (최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로)

  • Kim, Wook-Dong;Jang, Han-Jong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

A Fuzzy Variable Structure Controller Composed of Position-type and Velocity-type Control Rule (위치형과 속도형 제어규칙을 갖는 가변구조 퍼지 제어기)

  • Park, Hun-Soo;Lee, Ji-Hong;Chae, Seog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.3
    • /
    • pp.56-67
    • /
    • 1993
  • A Class of fuzzy controller based on the variable structure system(VSS) technique in which different structures of controllers are fuzzily switched according to the switching rules in proppsed. The structure of proposed controllers was motivated by the characteristics of position type fuzzy controller and velocity type fuzzy controller ; the former generally gives good performance in transient perod and the latter are capable of reducing steady state error of response. To show the usefulness of the proposed controller, it is applied to several systems that is difficult to stabilize or difficult to get satisfactory responsed by conventional fuzzy controllers.

  • PDF

A Position Control of Induction Motor using Optimized Fuzzy Controller (최적 퍼지제어기를 이용한 유도모터의 위치제어)

  • Choo, Yeon-Gyu;Kang, Shin-Chul;Lee, Chang-Ho;Kim, Jong-Jin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.732-735
    • /
    • 2007
  • Recently the control of induction motor for position control has been extensively studied. The representative method is PIDA controller proposed by Jung&Dorf. By designed PIDA controller' parameter had large value. Moreover, this method is very analyze, so that, not adapted controller parameter in disturbance. Besides using generalize fuzzy controller. Because input and output membership function is linguistic type, therefore system response is very slow. So, in this paper we used optimized fuzzy controller. Optimized fuzzy controller is output membership function is unity value. The controller performance was estimated applied to induction motor' position control.

  • PDF

A Study of Position Control Performance Enhancement in a Real-Time OS Based Laparoscopic Surgery Robot Using Intelligent Fuzzy PID Control Algorithm (Intelligent Fuzzy PID 제어 알고리즘을 이용한 실시간 OS 기반 복강경 수술 로봇의 위치 제어 성능 강화에 관한 연구)

  • Song, Seung-Joon;Park, Jun-Woo;Shin, Jung-Wook;Lee, Duck-Hee;Kim, Yun-Ho;Choi, Jae-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.3
    • /
    • pp.518-526
    • /
    • 2008
  • The fuzzy self-tuning PID controller is a PID controller with a fuzzy logic mechanism for tuning its gains on-line. In this structure, the proportional, integral and derivative gains are tuned on-line with respect to the change of the output of system under control. This paper deals with two types of fuzzy self-tuning PID controllers, rule-based fuzzy PID controller and learning fuzzy PID controller. As a medical application of fuzzy PID controller, the proposed controllers were implemented and evaluated in a laparoscopic surgery robot system. The proposed fuzzy PID structures maintain similar performance as conventional PID controller, and enhance the position tracking performance over wide range of varying input. For precise approximation, the fuzzy PID controller was realized using the linear reasoning method, a type of product-sum-gravity method. The proposed controllers were compared with conventional PID controller without fuzzy gain tuning and was proved to have better performance in the experiment.

Robust position control of DC motor using fuzzy acceleration control (퍼지 가속도제어를 이용한 직류전동기의 강인한 위치제어)

  • 박귀태;이기상;배상욱;박태홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.451-456
    • /
    • 1991
  • A robust position control scheme for DC Motor is proposed based on Fuzzy Acceleration Control. Proposed control system has the similar structure that Y. Hori proposed. But the PI type acceleration controller of it is replaced by Fuzzy Logic Controller(FLC) which is known to be robust to the operating point and parameter variations. By the simulation study for a real DC Motor, we have slowed the superiority to the continuous PI acceleration controller in the view point of robustness to the operating point and parameter variations.

  • PDF

Temperature Control of Ondol Indoor-Space (온돌 실내공간의 온도제어)

  • Shin, C.B.;Lee, J.W.;Sah, J.Y.;Lee, S.C.;Cho, S.H.;Suh, H.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.538-545
    • /
    • 1995
  • The heat transfer model of ondol heating system is derived in the linear form. The step responses of On-Off controller, PID controller and Position type fuzzy controllers are compared in the sense of several aspects : variation of temperature feedback variable, variation of supplied heat quantity by the boiler, variation of flow rate, variation of thickness of the base, variation of the outdoor temperature.

  • PDF

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Visual servoing by a fuzzy reasoning method (퍼지추론에 의한 시각적 구동방법)

  • 김태원;서일홍;오상록
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.984-989
    • /
    • 1991
  • In this paper, a novel type of a visual servoing method is proposed for eye-in-hand robots by employing a self-organizing fuzzy controller. For this is there defined a new Jacobian riot to be the function of a relative position of the object but to be a function of the only image features. Instead of obtaining an analytic form of the proposed Jacobian, a self-organizing fuzzy controller is then proposed to alleviate difficulties in real-time implementation. To show the validities, the proposed method is applied to a 2-dimensional visual servoing task.

  • PDF