• Title/Summary/Keyword: position tracking

Search Result 1,512, Processing Time 0.027 seconds

Tracking Performance Improvement of a Magnetic Levitation Based Fine Manipulator (자기부상식 미동 매니퓰레이터의 추종성능 향상)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.58-65
    • /
    • 1999
  • A magnetic levitation system requires a robustness to overcome a dynamic instability due to disturbances. In this paper a robust controller for a magnetically levitated fine manipulator is presented. The proposed controller consists of following two parts: a model reference controller and an $H_{\infty}$ controller. First, the model reference control stabilizes the motion of the manipulator. Then, the motion of the manipulator follows that of the reference model. Second, the $H_{\infty}$ control minimizes errors generated from the model reference control due to noise and disturbance since the $H_{\infty}$ control is a kind of robust control. The experiments of position control and tracking control are carried out by use of the proposed controller under the conditions of free disturbances and forced disturbances. Also, the experiments using PID controller are carried out under the same conditions. The results from above two controllers are compared to investigate the control performances. As the results, it is observed that the proposed controller has similar position accuracy but better tracking performances comparing to the PID controller as well as good disturbance rejection effect due to the robust characteristics of the controller. In conclusion. it is verified that the proposed controller has the simple control structure, the good tracking performances and good disturbance rejection effect due to the robust characteristics of the controller.

  • PDF

Tracking of Moving Objects for Mobile Mapping System (모바일매핑시스템에서의 이동객체 추적을 위한 연구)

  • Jung, Jae-Seung;Park, Jae-Min;Kim, Byung-Guk
    • Spatial Information Research
    • /
    • v.14 no.2 s.37
    • /
    • pp.235-244
    • /
    • 2006
  • The MMS(Mobile Mapping System) using the vehicle equipped GPS, IMU and CCD Cameras is the effective system for the management of the road facilities, update of the digital map, and etc. The image, vehicle's 3 dimensional position and attitude information provided MMS is a important source for positioning objects included the image. In this research we applied the tracking technique to the specific object in image. The extraction of important object from immense MMS data makes more effectiveness in this system.

  • PDF

Design of a User-Friendly Control System using Least Control Parameters (최소 제어 인자 도출을 통한 사용편의성 높은 제어시스템 설계)

  • Heo, Youngjin;Park, Daegil;Kim, Jinhyun
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.1
    • /
    • pp.67-77
    • /
    • 2014
  • An electric motor is the one of the most important parts in robot systems, which mainly drives the wheel of mobile robots or the joint of manipulators. According to the requirement of motor performance, the controller type and parameters vary. For the wheel driving motors, a speed tracking controller is used, while a position tracking controller is required for the joint driving motors. Moreover, if the mechanical parameters are changed or a different motor is used, we might have to tune again the controller parameters. However, for the beginners who are not familiar about the controller design, it is hard to design pertinently. In this paper, we develop a nominal robust controller model for the velocity tracking of wheel driving motors and the position tracking of joint driving motors based on the disturbance observer (DOB) which can reject disturbances, modeling errors, and dynamic parameter variations, and propose the methodology for the determining the least control parameters. The proposed control system enables the beginners to easily construct a controller for the newly designed robot system. The purpose of this paper is not to develop a new controller theory, but to increase the user-friendliness. Finally, simulation and experimental verification have performed through the actual wheel and joint driving motors.

Three-Dimensional Location Tracking System for Automatic Landing of an Unmanned Helicopter (무인 헬기 자동 착륙을 위한 3차원 위치 추적 시스템)

  • Choo, Young-Yeol;Kang, Seong-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.608-614
    • /
    • 2008
  • This paper describes a location tracking system to guide landing process of an Unmanned Helicopter(UMH) exploiting MIT Cricket nodes. For automatic landing of a UMH, a precise positioning system is indispensable. However, GPS(Global Positioning System) is inadequate for tracking the three dimensional position of a UMH because of large positioning errors. The Cricket systems use Time-Difference-of-Arrival(TDoA) method with ultrasonic and RF(Radio Frequency) signals to measure distances. They operate in passive mode in that a listener attached to a moving device receives distance signals from several beacons located at fixed points on ground. Inevitably, this passive type of implementation causes large disturbances in measuring distances between beacons and the listener due to wind blow from propeller and turbulence of UMH body. To cope with this problem, we proposed active type of implementation for positioning a UMH. In this implementation, a beacon is set up at UMH body and four listeners are located at ground area at least where the UMH will land. A pair of Ultrasonic and RF signals from the beacon arrives at several listeners to calculate the position of the UMH. The distance signals among listeners are synchronized with a counter value appended to each distance signals from the beacon.

PTZ Camera Tracking Using CAMShift (CAMShift를 이용한 PTZ 카메라 추적)

  • Chang, Il-Sik;An, Tae-Ki;Park, Kwang-Young;Park, Goo-Man
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.271-277
    • /
    • 2010
  • In this paper we proposed an object tracking system using PTZ camera. Once the target object is detected, the CAMshift tracking algorithm focuses it in realtime mode as the camera is moving accordingly. Since the CAMShift algorithm takes into account the object size, zoom related tracking is possible. We used the spherical coordinate to gain pan and tilt position. The position information is used to set the center of target object in the middle of the image by using the PTZ protocol and RS-485 interface. Our system showed excellent experimental results in various environments.

MONTE CARLO ANALYSIS FOR FIRST ACQUISITION AND TRACKING OF THE KOMPSAT SPACECRAFT

  • Lee, Byeong-Seon;Lee, Jeong-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.417-425
    • /
    • 1998
  • Monte Carlo analysis is performed for the first acquisition and tracking of the KOMP-SAT spacecrat in GSOC tracking station after separation from Taurus launch vehicle. The error bounds in position and velocity vector in Earth-fixed coordinate system at injection point are assumed based on the previous launch mission. Ten thousands injection orbital elements with normal distribution are generated and propagated for Monte Carlo analysis. The tracking antenna pointing errors at spacecraft rising time and closest approach time at German Space Operations Center(GSOC) Weiheim track-ing station are derived. Then the tracking antenna scanning angles are analyzed for acquisition and tracking of the KOMPSAT signal.

  • PDF

Multi-Target Tracking System Using Extended JPDA Algorithm (확장된 JPDA 알고리즘을 이용한 다중 표적 추적 시스템)

  • 김성배;방승철;김은수;김은수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.2
    • /
    • pp.47-54
    • /
    • 1992
  • In this paper, a new extended JPDA (Joint Probabilistic Data Association) tracking algorithm which has more excellent performance than that of the conventional JPDA algorithm in case of the tracking of crossing targets is proposed. In the proposed extended JPDA algorithm, the velocity parameters as well as the position parameters are included to compute the association probabilities between tracks and measurement data. Then the tracking performance of crossing targets is improved and the track bias of parallel moving targets can be reduced. Accordingly, in this paper, the new extended JPDA algorithm for multitarget tracking is proposed and its good performance is shown through the computer simulation. And, tracking performance of extended JPDA algorithm is also compared with that of JPDA algorithm with our noise model.

  • PDF

Stabilization and Tracking Algorithms of a Shipboard Satellite Antenna System (선박용 위성 안테나 시스템의 안정화 및 추적 알고리즘)

  • Koh, Woon-Yong;Hwang, Seung-Wook;Ha, Yun-Su;Jin, Gang-Gyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2002
  • This paper presents the development of development of stabilization and tracking algorithms for a shipboard satellite antenna system. In order to stabilize the satellite antenna system designed in the previous work, a model for each control axis is derived and its parameters are estimated using a genetic algorithm, and the state feedback controller is designed based on the linearized model. Then a tracking algorithm is derived to overcome some drawbacks of the step tracking. The proposed algorithm searches for the best position using gradient-based formulae and signal intensities measured according to a search pattern. The effectiveness of both the stabilization and tracking algorithms is demonstrated through experiment using real-world data.

Performance Evaluation of the Modified IMMPDA Filter Using 3-D Maneuvering Targets In Clutter (클러터 환경하에서 3 차원 기동표적을 사용한 수정된 IMMPDA 필터의 성능 분석)

  • 김기철;홍금식;최성린
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.211-211
    • /
    • 2000
  • The multiple targets tracking problem has been one of main issues in the radar applications area in the last decade. Besides the standard Kalman filtering, various methods including the variable dimension filter, input estimation filter, interacting multiple model (IMM) filter, federated variable dimension filter with input estimation, probable data association (PDA) filter etc. have been proposed to address the tracking and sensor fusion issues. In this paper, two existing tracking algorithms, i.e. the IMMPDA filter and the variable dimension filter with input estimation (VDIE), are combined for the purpose of improving the tracking performance of maneuvering targets in clutter. To evaluate the tracking performance of the proposed algorithm, three typical maneuvering patterns i.e. Waver, Pop-Up, and High-Diver motions, are defined and are applied to the modified IMMPDA filter considered as well as the standard IMM filter. The smaller RMS tracking errors, in position and velocity, of the modified IMMPDA filter than the standard IMM filter are demonstrated through computer simulations.

  • PDF

Region Based Object Tracking with Snakes (스네이크를 이용한 영역기반 물체추적 알고리즘)

  • Kim, Young-Sub;Han, Kyu-Bum;Baek, Yoon-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.307-312
    • /
    • 2001
  • In this paper, we proposed the object-tracking algorithm that recognizes and estimates the any shaped and size objects using vision system. For the extraction of the object from the background of the acquired images, spatio-temporal filter and signature parsing algorithm are used. Specially, for the solution of correspondence problem of the multiple objects tracking, we compute snake energy and position information of the target objects. Through the real-time tracking experiment, we verified the effectiveness of the suggested tracking algorithm.

  • PDF