• Title/Summary/Keyword: position sensor

Search Result 2,305, Processing Time 0.031 seconds

The Fuzzy Steering Control Using a Slope Direction Estimation Method for Small Unmanned Ground Vehicle (경사방향 추정 기법을 이용한 소형로봇의 퍼지 조향 제어)

  • Lee, Sang Hoon;Huh, Jin Wook;Kang, Sincheon;Lee, Myung Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.721-728
    • /
    • 2012
  • The tracked SUGVs(Small Unmanned Ground Vehicles) are frequently operated in the narrow slope such as stairs and trails. But due to the nature of the tracked vehicle which is steered using friction between the track and the ground and the limited field of view of driving cameras mounted on the lower position, it is not easy for SUGVs to trace narrow slopes. To properly trace inclined narrows, it is very important for SUGVs to keep it's heading direction to the slope. As a matter of factor, no roll value control of a SUGV can makes it's heading being located in the direction of the slope in general terrains. But, the problem is that we cannot directly control roll motion for SUGV. Instead we can control yaw motion. In this paper, a new slope driving method that enables the vehicle trace the narrow slopes with IMU sensor usually mounted in the SUGV is suggested which including an estimation technique of the desired yaw angle corresponding to zero roll angle. In addition, a fuzzy steering controller robust to changes in driving speed and the stair geometry is designed to simulate narrow slope driving with the suggested method. It is shown that the suggested method is quite effective through the simulation.

RSSI based Cooperative Localization Algorithm Considering Wireless Propagation Characteristics in Indoor Environment (실내 환경에서 무선 전파특성을 고려한 수신신호세기 기반의 협력 위치추정 알고리즘)

  • Jeong, Seung-Heui;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.875-878
    • /
    • 2010
  • In this paper, we proposed a RSSI based cooperative localization algorithm considering wireless propagation characteristics in indoor environment for wireless sensor networks, which can estimate the BN position. The conventional RSSI based estimation scheme has low precision ranging according to time variable propagation characteristics. Hence, we implemented ray-launching simulator for analysis of propagation characteristics in $13.65m{\times}8.7m$, and performed proposed localization scheme with 4 RN and 1 to 5 BN. From the results, if we can consider channal characteristic in proposed ranging scheme, the cooperative localization algorithm with propagation characteristics provides higher localization accuracy than RSSI based conventional one.

  • PDF

Development and Evaluation of an Self-Operated Face Capturing System (자가 안면영상 촬영장치 개발 및 검증)

  • Jeon, Young-Ju;Do, Jun-Hyeong;Kim, Jang-Wong;Kim, Sang-Gil;Lee, Hae-Jung;Lee, Yu-Jung;Kim, Keun-Ho;Kim, Jong-Yeol
    • Korean Journal of Oriental Medicine
    • /
    • v.17 no.2
    • /
    • pp.115-120
    • /
    • 2011
  • Objectives : The purpose of this study is to develop an apparatus which can take a facial image by self-operated capturing technique. The user can obtain one's facial image immediately after adjusting facial tilt and focusing distance. The system has been designed for classifying Sasang typology based on facial image. Methods : The system is composed of a Webcam, one-way glass mirror and mini LCD. The Webcam takes a facial image which is displayed on the mini LCD. Then the user can see and adjust to the right position in the real time through the image mirror-reflected from the mini LCD. The optical sensor is used to estimate the proper focusing distance. To verify the performance of the system, 11 characteristic points on the facial image are used and compared with high performance DSLR camera(D700) by applying the coefficient of variance and Bland-Altman Plot. Results : The developed system and D700 show enough agreement with the small coefficient of variance to analyse constitutional types with a facial im mage. However, the result of Bland-Altman plot shows that the width parameters have distortions owing to short focusing distance. Conclusions : The system is expected to be utilized on u-healthcare services for home environment after improving the distortion in the width parameters.

Development of High-Sensitivity Detection Sensor and Module for Spatial Distribution Measurement of Multi Gamma Sources (감마선원의 공간분포 가시화 및 3D모델링을 위한 운용환경 개발)

  • Song, Keun-Young;Lim, Ji-Seok;Choi, Jung-Huk;Yuk, Young-Ho;Hwang, Young-Gwan;Lee, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.702-704
    • /
    • 2017
  • In case of dismantling of nuclear power generation facility or radiation accident, the accurate information of gammaray source is essential for rapid decontamination. In order to more efficiently represent the position of the gamma ray to be removed, we create a spatial domain based on the real image. And we can perform decontamination of gamma-ray source more quickly by expressing the distribution of radiation source. The developed gamma ray imaging device overlaps with the visible image after gamma - ray detection and provides only two - dimensional image, but it does not show the distance information to the source. In this paper, we have developed a operation environment using the 3D visualization model for reporting effective decontamination operation.

  • PDF

Location for a Car Crash and The Service System (차량 충돌 사고에 대한 위치 확인 및 서비스 시스템)

  • Moon, Seung-Jin;Lee, Yong-Joo
    • The KIPS Transactions:PartA
    • /
    • v.16A no.5
    • /
    • pp.381-388
    • /
    • 2009
  • The spread of wireless Internet technology development and applications with location information in the form of location-based services are becoming more diverse. In particular, where you recognize the location of objects such as people and things and to provide valuable services based on the ubiquitous and location-based services are emerging as an important service. The collision between the vehicle position measurement in this thesis and offers related service system. Used in the proposed system, the GPS PACKET with information about the location and time of collision for the vehicle crash, the vehicle consists of a NodeID. Cause a conflict between these data at the vehicle, the vehicle through the gateway from the server to decide whether to go on to determine that an emergency situation, Emergency Center, the location information and giving information about whether the conflict is measured. Also, for such an emergency, such as a family on the outside of the wireless terminal related to Wireless (PDA, Phone) is to let me know. The server to want to save the crash information to the database of configuration. Additionally, the proposed U-LBS system to verify the validity of the experiment was performed.

Age Difference in the Cephalad Attenuation of Upper Body Accelerations During Fast Speed Walking (빠른 보행시 상체 가속도의 머리 방향 감쇄의 연령차)

  • Jeon, Hyeong-Min;Kim, Ji-Won;Kwon, Yu-Ri;Heo, Jae-Hoon;Eom, Gwang-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.2
    • /
    • pp.349-353
    • /
    • 2016
  • The purpose of this study was to investigate possible age differences in the attenuation of acceleration in the upper body (from pelvis through shoulder to head) during fast walking. Thirty young and 29 elderly subjects participated in this study. Wireless acceleration sensors were attached on head, shoulder, and pelvis. Subjects performed two trials of fast walking on a treadmill, where the fast speed was defined as 1.5 times of the comfortable speed. Root-mean-squared (RMS) accelerations of each axis were compared with age group and sensor position as independent factors. In the AP direction, the pelvis acceleration was greater in the young and the shoulder-to-head attenuation was also greater in the young (p<0.001), so that the head acceleration was comparable between age groups (p=0.581). In the ML direction, the pelvis acceleration was greater in the young and also the pelvis-to-shoulder attenuation was greater in the young (p<0.001), so that the head acceleration was greater in the elderly group (p<0.001). Insufficient attenuation ML acceleration in the elderly resulting in the greater acceleration in the head may deteriorate the balance control which utilize feedback signals from the sensory organs in head, e.g., vestibular and visual systems.

A Study on Analysis of Clinical Data and Telemedicine System for the Treatment of Acrophobia (고소공포증 치료를 위한 원격진료 시스템 및 데이터 분석에 대한 연구)

  • Ryu, Jong-Hyun;Paek, Seung-Eun
    • The Journal of Information Technology
    • /
    • v.9 no.1
    • /
    • pp.21-32
    • /
    • 2006
  • Acrophobia is a symptom of feeling an abnormal fear of heights. Medications or cognitive-behavior methods have been mainly used to treat the acrophobia. In these days the virtua1 reality technology has been applied to treat such an anxiety disorders. In this thesis, an telemedicine assistant system for treatment of acrophobia using biomedical signals and virtual reality technique is proposed. I made two virtual reality simulations for treatment of acrophobia and telemedicine system for communication between doctor and patient using personal computer. A virtual environment provides patient with stimuli which arouses phobia, and exposition to such environment makes him have ability to overcome the fear. Recently, the patient can take diagnosis from a medical doctor in distance with the telemedicine system. Multimedia conference service, on-line questionary, signal transfer system are needed to configure such system. Virtual reality simulation system that composed of position sensor, head mount display, and audio system, is also included in this telemedicine system. I added virtual environment update system to this virtual reality telemedicine system for treatment of acrophobia. Former acrophobia treatment systems use only patient's score of the questionary to appraise. The new system developed in this thesis uses not only patient's score of the questionary but also biomedical signals such as HR, GSR amplitude, GSR RT to increase the objectivity and quantitativity. The experimental results show that HR and GSR amplitude are useful for decision of acrophobia. We will apply this system to the acrophobia patient in distance and be able to offer better medical treatment for mental illness in near future.

  • PDF

The design of a scintillation system based on SiPMs integrated with gain correction functionality

  • Lin, Zhenhua;Hautefeuille, Benoit;Jung, Sung-Hee;Moon, Jinho;Park, Jang-Guen
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.164-169
    • /
    • 2020
  • Use of SiPM has been considered as an alternative to PMT, because of its compact size, low-operating voltage, non-sensitive to electromagnetic, low costs and so on. The main limitation for the use of SiPM is due to its small sensitive area compared to PMT that limits the light collection, and therefore the sensor energy resolution. In this article we studied the effect of increasing the number of SiPM by connecting them in parallel to increase the active detection area. This allowed us to compare the different energy resolution measurements. 137Cs has been selected as reference to study the energy resolution for 662 keV gamma-rays. Another investigation was to compare the minimum detectable gamma energy under various SiPM configurations. It has been found that the use of 4 SiPM arrays can greatly improve the energy resolution up to 4% than only one SiPM array, meanwhile use of more than 2 SiPM arrays does not increase the energy resolution significantly. Thus we can conclude that for a large area of cylindrical scintillator (3 × 3 inches), the use of SiPMs are limited to a certain number or certai active area depending on the commercial SiPMs, and its cost should be less than traditional PMT for the cost-effective and compact size considerations. It is well known that the gain of SiPM varies with temperature. In this article, we also calibrated gain to guarantee the same position of photoelectric peak in response of different temperatures.

Tactile Sensing for Virtual Interaction as a Part of Ubiquitous Game Development (유비쿼터스게임의 상호작용 구성요소 개발을 위한 촉각응용)

  • Lee, Young-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1062-1068
    • /
    • 2007
  • In order to design and develop a ubiquitous game, it is necessary to develop a natural and flexible interface between the real world and the virtual world, based on social and physical context awareness. We design user interface model and the tactile sensing system that performs virtual interaction and collection of the sensor data. It is sensitive so the collected data should be filtered, rearranged and analyzed. This information is quite different from stylus input, keyboard, button or mouse for interaction. We detect kicked 3D force position of a ball, moment of area, moment of inertia and modified ball shape using tactile sensing system and analyzed data. The results demonstrate that the proposed approach is desirable and robust as well as the results can be used realistic actions and reactions considering attack force and to make interesting environments for ubiquitous game.

Accuracy Analysis of the Orbit Modeling with Various GCP Configurations and Unknown Parameter Sets (기준점 위치와 미지수 조합에 따른 궤도모델링의 정확도 분석)

  • Kim, Dong-Wook;Kim, Hyun-Suk;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.133-140
    • /
    • 2008
  • In this paper, we analyzed the accuracy of orbit modeling with various control point configurations and adjustment unknown parameter sets. We used 152 GCP points acquired from GPS surveying, which were distributed from Choon-chun to Nha-ju along 420km in distance. For orbit modeling, seven adjustment parameter sets were chosen to include parameters for satellite position, velocity and attitude angles at different degree of freedom. Firstly we determined the location of model point in seven configurations. Secondly we estimated model parameters for each parameter set and for each GCP configurations. Finally we applied the model to reference check points and analyzed its accuracy. We were able to find the unknown parameter set that produce best orbit modeling performance regardless of the configuration of model points.