• 제목/요약/키워드: position estimation

검색결과 1,605건 처리시간 0.03초

항공영상을 이용한 하이브리드 영상 항법 변수 추출 (Hybrid navigation parameter estimation from aerial image sequence)

  • 심동규;정상용;이도형;박래홍;김린철;이상욱
    • 전자공학회논문지S
    • /
    • 제35S권2호
    • /
    • pp.146-156
    • /
    • 1998
  • Thispapr proposes hybrid navigation parameter estimation using sequential aerial images. The proposed navigation parameter estimation system is composed of two parts: relative position estimation and absolute position estimation. the relative position estimation recursively computes the current velocity and absolute position estimation. The relative position estimation recursively computes the current velocity and position of an aircraft by accumulating navigation parameters extracted from two succesive aerial images. Simple accumulation of parameter values decreases reliability of the extracted parameters as an aircraft goes on navigating. therefore absolute position estimation is required to compensate for position error generated in the relative position step. The absolute position estimation algorithm combining image matching and digital elevation model(DEM) matching is presented. Computer simulation with real aerial image sequences shows the efficiency of the proposed hybrial algorithm.

  • PDF

SRM의 회전자 위치추정 개선을 위한 PLL기법의 적용 (Improvement of Rotor Position Estimation of SRM using PLL technique)

  • 백원식;최경호;황돈하;김동희;김민희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.200-202
    • /
    • 2005
  • In this paper, improved rotor position estimation for position sensorless control system of the SRM (Switched Reluctance Motor) is presented. For more accurate rotor position estimation, the PLL (Phase Locked Loop) based position interpolation is adapted. In the current-flux-rotor position lookup table based rotor position estimation, the inherent current and flux-linkage ripple can cause the position estimation error. Instead of the conventional low-pass filter, the PLL based position interpolation technique is used for the better dynamic performance. The developed rotor position estimation scheme is realized using TMS320F2812 digital signal processor and prototype 1-hp SRM.

  • PDF

항공영상을 이용한 통합된 위치 추정 (Integrated Position Estimation Using the Aerial Image Sequence)

  • 심동규;박래홍;김인철;이상욱
    • 전자공학회논문지S
    • /
    • 제36S권12호
    • /
    • pp.76-84
    • /
    • 1999
  • 본 논문에서는 항공 영상을 이용한 통합된 비행체의 위치 추정기법을 제안하였다. 제안한 항법 변수 추정 시스템은 상대위치 추정과 절대위치 추정 두 부분으로 구성되어 있다. 상대위치 추정 기법은 연속된 두 영상의 상대적 움직임을 추정하고 이것을 누적함으로써 현재의 위치를 추정한다. 이러한 단순한 누적 방법으로 비행이 진행됨에 따라 오차가 점차 증가하게 된다. 그러므로 상대위치 추정 부분에서 발생하는 오차를 줄일 수 있는 절대위치 추정기법이 필요하다. 본 논문의 절대위치 추정기법은 영상정합과 DEM (Digital Elevation Model) 정보를 이용하는 방법으로 구성되어 있다. 영상정합을 위하여 robust oriented Hausdorff measure (ROHM)을 사용하였으며 DEM 정합을 위하여 여러 장의 영상 쌍을 사용하는 알고리듬을 이용하였다. 네 개의 항공영상을 이용한 컴퓨터 시뮬레이션을 통해 제안한 방법의 효율성을 보였다.

  • PDF

최대우도법을 이용한 라이다 포인트군집의 박스특징 추정 (Box Feature Estimation from LiDAR Point Cluster using Maximum Likelihood Method)

  • 김종호;이경수
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.123-128
    • /
    • 2021
  • This paper present box feature estimation from LiDAR point cluster using maximum likelihood Method. Previous LiDAR tracking method for autonomous driving shows high accuracy about velocity and heading of point cluster. However, Assuming the average position of a point cluster as the vehicle position has a lower accuracy than ground truth. Therefore, the box feature estimation algorithm to improve position accuracy of autonomous driving perception consists of two procedures. Firstly, proposed algorithm calculates vehicle candidate position based on relative position of point cluster. Secondly, to reflect the features of the point cluster in estimation, the likelihood of the particle scattered around the candidate position is used. The proposed estimation method has been implemented in robot operating system (ROS) environment, and investigated via simulation and actual vehicle test. The test result show that proposed cluster position estimation enhances perception and path planning performance in autonomous driving.

미지의 영역에서 활동하는 자율이동로봇의 초음파지도에 근거한 위치인식 시스템 개발 (Development of a sonar map based position estimation system for an autonomous mobile robot operating in an unknown environment)

  • 강승균;임종환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1589-1592
    • /
    • 1997
  • Among the prerequisite abilities (perception of environment, path planning and position estimation) of an autonomous mobile robot, position estimation has been seldom studied by mobile robot researchers. In most cases, conventional positioin estimation has been performed by placing landmarks or giving the entrire environmental information in advance. Unlikely to the conventional ones, the study addresses a new method that the robot itself can select distinctive features in the environment and save them as landmarks without any a priori knowledge, which can maximize the autonomous behavior of the robot. First, an orjentaion probaility model is applied to construct a lcoal map of robot's surrounding. The feature of the object in the map is then extracted and the map is saved as landmark. Also, presented is the position estimation method that utilizes the correspondence between landmarks and current local map. In dong this, the uncertainty of the robot's current positioin is estimated in order to select the corresponding landmark stored in the previous steps. The usefulness of all these approaches are illustrated with the results porduced by a real robot equipped with ultrasonic sensors.

  • PDF

A Novel Position Sensorless Speed Control Scheme for Permanent Magnet Synchronous Motor Drives

  • Won, Tae-Hyun;Lee, Man-Hyung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제2B권3호
    • /
    • pp.125-132
    • /
    • 2002
  • PMSMS (permanent magnet synchronous motors) are widely used in industrial applications and home appliances because of their high torque to inertia ratio, superior power density, and high efficiency. For high performance control, accurate informations about the rotor position is essential. Sensorless algorithms have lately been studied extensively due to the high cost of position sensors and their low reliability in harsh environments. A novel position sensorless speed control for PMSMs uses indirect flux estimation and is presented in this paper. Rotor position and angular velocity are estimated by the proposed indirect flux estimation. Linkage flux and magnetic field flux are calculated by the voltage equations and the measured phase current without any integration. Instead of linkage flux calculation with integral operation, indirect flux and differential magnetic field are used for the estimation of rotor position. A proper rejection technique fur current noise effect in the calculation of differential linkage flux is introduced. The proposed indirect flux detecting method is free from the integral rounding error and linkage flux drift problem, because differential linkage flux can be calculated without any integral operation. Furthermore, electrical parameters of the PMSM can be measured by the proposed TCM (time compression method) for soft starting and precise estimation of rotor position. The position estimator uses accurate electrical parameters that are obtained from the proposed TCM at starting strategy. In the operating region, a proper compensation method fur temperature effect can compensate fir the estimation error from the variation of electrical parameters. The proposed novel position sensorless speed control scheme is verified by the experimental results.

공연무대를 이용한 엔터테인먼트 로봇의 위치추정 방법 (Position Estimation Method of Entertainment Robot in Performance Stage)

  • 강철웅;고석준
    • 대한임베디드공학회논문지
    • /
    • 제9권3호
    • /
    • pp.151-156
    • /
    • 2014
  • In this paper, we propose a position estimation method of an entertainment robot in a performance stage. A position information is needed to produce contents of an entertainment robot performance. First, the performance stage is realized by a CD (cadmium sulfide) sensor matrix with a constant distance. Then the proposed position estimation uses ON/OFF information of a CD sensor in a performance stage. We confirmed that the position of the robot is detected with an maximum 4cm in position evaluation experiments. The robot was traveling to the final target position in the walking experiment with 75cm and 120cm path plan. Ultimately, the effectiveness of the proposed estimation is assessed by experimental results of a robot in performance stage. Also, in the proposed system installed by a robot performance contents, there is no necessity to mount a position estimation device on a robot; therefore an advantage of our system is that an entertainment robot commercialized by robot vendor can be utilized in our performance stage directly.

FFT-Based Position Estimation in Switched Reluctance Motor Drives

  • Ha, Keunsoo;Kim, Jaehyuck;Choi, Jang Young
    • Journal of Magnetics
    • /
    • 제19권1호
    • /
    • pp.90-100
    • /
    • 2014
  • Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.

Mathematical Analysis and Simulation Based Survey on Initial Pole Position Estimation of Surface Permanent Magnet Synchronous Motor

  • Kim, Tae-Woong;Wheeler, Patrick;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • 제9권3호
    • /
    • pp.499-506
    • /
    • 2009
  • In this paper, the initial pole-position estimation of a surface (non-salient) permanent magnet synchronous motor is mathematically analyzed and surveyed on the basis of simulation analysis, and developed for accurate servo motor drive. This algorithm is well carried out under the full closed-loop position control without any pole sensors and is completely insensitive to any motor parameters. This estimation is based on the principle that the initial pole-position is simply calculated by the reverse trigonometric function using the two feedback currents in the full closed-loop position control. The proposed algorithm consists of the predefined reference position profile, the information of feedback currents, speed, and relative position, and the reverse trigonometric function for the initial-pole position estimation. Comparing with the existing researches, the mathematical analysis is introduced to get a more accurate initial pole-position of the surface permanent magnet motor under the closed-loop position control. It is found that the proposed algorithm can be easily applied in servo drive applications because it satisfies the following user's specifications; accuracy and moving distance.

이동 로봇의 위치측정을 위한 PSD 센서 시스템에 관한 연구 (A study on the PSD sensor system for localization of mobile robots)

  • 노영식
    • 제어로봇시스템학회논문지
    • /
    • 제2권4호
    • /
    • pp.330-336
    • /
    • 1996
  • An real-time active beacon localization system for mobile robots is developed and implemented. This system permits the estimation of robot positions when detecting light sources by PSD(Position Sensitive Detector) sensor which are placed sparsely over the robots work space as beacons(or landmarks). An LSE(Least Square Estimation) method is introduced to calibrate the internal parameters of a model for the beacon and robot position. The proposed system has two operational modes of position estimation. One is the initial position calculation by the detection of two or more light sources positions of which are known. The other is the continuous position compensation that calculates the position and heading of the robot using the IEKF(Iterated Extended Kalman Filter) applied to the beacon and dead-reckoning data. Practical experiments show that the estimated position obtained by this system is precise enough to be useful for the navigation of robots.

  • PDF