• 제목/요약/키워드: position determination

검색결과 555건 처리시간 0.029초

보의 1차 고유진동수가 최대가 되는 중간지지점의 최적위치 선정에 관한 연구 (A Study on the Optimal Position Determination of Middle Supporting Points to Maximize the First Natural Frequency of a Beam)

  • 안찬우;홍도관;김동영;최석창;박일수
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.89-95
    • /
    • 2001
  • This paper describes the natural frequencies obtained through FEA (Finite Element Analysis) and Numerical Analysis which uses the boundary conditions to each equation of motion and the consecutive conditions at each supporting point. And then. we studied on the optimal position determination of middle supporting points to maximize the natural frequency of a beam at 24 Models. We present the data of optimal condition for designing a beam.

  • PDF

GPS반송파를 이용한 자세결정에서 UKF적용을 통한 성공률 변화 분석 (Success Rate Analysis in GPS Attitude Determination Using a Unscented Kalman Filter)

  • 권철범;천세범;이은성;강태삼;지규인;이영재
    • 제어로봇시스템학회논문지
    • /
    • 제11권3호
    • /
    • pp.222-227
    • /
    • 2005
  • Resolving the integer ambiguity of GPS carrier phase measurements is the most important routine in precise positioning. In this paper, success rate is analyzed when using baseline information in the process of determining attitude. The result is verified through the simulation. Determining the initial position for the ambiguity resolution is estimated by using code measurement and baseline constraint. Success rate is estimated using covariance of the formed initial position. UKF has been used to overcome the nonlinear baseline condition during the process so that the higher success rate has been obtained compared with the general attitude determination.

이차원 자세 측정용 GPS 수신기 설계 (Design of a Two-dimensional Attitude Determining GPS Receiver)

  • 손석보;박찬식;이상정
    • 한국군사과학기술학회지
    • /
    • 제3권2호
    • /
    • pp.131-139
    • /
    • 2000
  • A design of CPS attitude determination system is described in this paper. The designed system is a low cost high precision 24 channel single frequency GPS(Global Positioning System) receiver which provides a precise absolute heading and pitch (or roll) as well as a position. It uses commercial chip-set and consists of two RF parts, two signal-tracking parts, a processor, memory parts and I/Os. In order to determine precise attitude, accurate carrier phase measurements and an efficient integer ambiguity resolution method are required. To meet these requirements, a PLL (Phase Locked Loops) is designed, and an algorithm called ARCE (Ambiguity Resolution with Constraint Equation) is adopted. The hardware and software structure of the system will be described, and the performance evaluated under various conditions will be presented. The test results will promise that more reliable navigation system be possible because the system provides all navigational information such as position, velocity, time and attitude.

  • PDF

다중대역 통합 신호처리 가능한 GNSS 수신기 개발 플랫폼 설계 및 구현 (Design and Implementation of a GNSS Receiver Development Platform for Multi-band Signal Processing)

  • 김진석;이선용;김병균;서흥석;안종선
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제13권2호
    • /
    • pp.149-158
    • /
    • 2024
  • Global Navigation Satellite System (GNSS) receivers are becoming increasingly sophisticated, equipped with advanced features and precise specifications, thus demanding efficient and high-performance hardware platforms. This paper presents the design and implementation of a Field-Programmable Gate Array (FPGA)-based GNSS receiver development platform for multi-band signal processing. This platform utilizes a FPGA to provide a flexible and re-configurable hardware environment, enabling real-time signal processing, position determination, and handling of large-scale data. Integrated signal processing of L/S bands enhances the performance and functionality of GNSS receivers. Key components such as the RF frontend, signal processing modules, and power management are designed to ensure optimal signal reception and processing, supporting multiple GNSS. The developed hardware platform enables real-time signal processing and position determination, supporting multiple GNSS systems, thereby contributing to the advancement of GNSS development and research.

국내 P공항의 부지 제한조건을 고려한 로컬라이저의 최적위치 선정에 관한 연구 (A Study on Determination for Location of Localizer Antenna under Area Restrictive Conditions at Domestic P-Airport)

  • 조환기;김종범;송병흠
    • 한국항공운항학회지
    • /
    • 제23권2호
    • /
    • pp.7-14
    • /
    • 2015
  • This paper deals with an optimal determination process for the built-in location of localizer under restrictive siting area conditions of a domestic P-airport. Aerodynamic forces and moments acting on the localizer structure can be used a reference to find the safe distance from jet blast and the position at which the reasonable structural loading is applied. Wind tunnel experiment is conducted to measure aerodynamic loadings. The finite element analysis for structural deformation is employed to get the information of structural failure. A new localizer's position is determined by considering aerodynamic loading, structural strength and thermal loading due to jet blast. Deflector effect was also investigated in this study. In conclusion, the location of localizer can be placed at shorter than the current position and greatly decreased if the deflector is applied at the front of localizer.

통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정 (Determination of an Optimal Sentence Segmentation Position using Statistical Information and Genetic Learning)

  • 김성동;김영택
    • 전자공학회논문지C
    • /
    • 제35C권10호
    • /
    • pp.38-47
    • /
    • 1998
  • 실용적인 기계번역 시스템을 위한 구문 분석은 긴 문장의 분석을 허용하여야 하는데 긴 문장의 분석은 높은 분석의 복잡도 때문에 매우 어려운 문제이다. 본 논문에서는 긴 문장의 효율적인 분석을 위해 문장을 분할하는 방법을 제안하며 통계 정보와 유전자 학습에 의한 최적의 문장 분할 위치 결정 방법을 소개한다. 문장 분할 위치의 결정은 분할 위치가 태그된 훈련 데이타에서 얻어진 어휘 문맥 제한 조건을 이용하여 입력문장의 분할 가능 위치를 결정하는 부분과 여러 개의 분할 가능 위치 중에서 안전한 분할을 보장하고 보다 많은 분석의 효율 향상을 얻을 수 있는 최적의 분할 위치를 학습을 통해 선택하는 부분으로 구성된다. 실험을 통해 제안된 문장 분할 위치 결정 방법이 안전한 분할을 수행하며 문장 분석의 효율을 향상시킴을 보인다.

  • PDF

Evaluation of KOMPSAT-1 Orbit Determination Accuracy

  • Kim, Hae-Dong;Choi, Hae-Jin;Kim, Eun-kyou
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.588-590
    • /
    • 2003
  • For the normal operations, KOMPSAT-1 orbits are determined using GPS navigation solutions data such as position and velocity vectors. Currently, the accuracy of GPS navigation solution data is generally known as on the order of 10~30 m with the removal of S/A. In this paper, an estimate of the current orbit determination accuracy for the KOMPSAT-1 is given. For the evaluation of orbit determination accuracy, the orbit overlap comparison is used since no independent orbits of comparable accuracy are available for comparison. As a result, It is shown that the orbit accuracy is on the order of 5 m RMS with 4 hrs arc overlap for the 30 hr arc.

  • PDF

Differential Evolution for Regular Orbit Determination

  • Dedhia, Pratik V.;Ramanan, R V.
    • International Journal of Aerospace System Engineering
    • /
    • 제7권2호
    • /
    • pp.6-12
    • /
    • 2020
  • The precise prediction of future position of satellite depends on the accurate determination of orbit, which is also helpful in performing orbit maneuvers and trajectory correction maneuvers. For estimating the orbit of satellite many methods are being used. Some of the conventional methods are based on (i) Differential Correction (DC) (ii) Extended Kalman Filter (EKF). In this paper, Differential Evolution (DE) is used to determine the orbit. Orbit Determination using DC and EKF requires some initial guess of the state vector to initiate the algorithm, whereas DE does not require an initial guess since a wide range of bounds for the design unknown variables (orbital elements) is sufficient. This technique is uniformly valid for all orbits viz. circular, elliptic or hyperbolic. Simulated observations have been used to demonstrate the performance of the method. The observations are generated by including random noise. The simulation model that generates the observations includes the perturbation due to non-spherical earth up to second zonal harmonic term.

Sensorless Estimation of Single-Phase Hybrid SRM using Back-EMF

  • Tang, Ying;He, Yingjie;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.198-206
    • /
    • 2017
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The back-EMF generated by the permanent magnet (PM) field whose performance is motor parameter independent is adopted as an index to achieve the sensorless control. The differential value of back-EMF is calculated by hardware and processed by DSP to capture a fixed rotor position four times for every mechanical cycle. In addition, to accomplish the normal starting of HSRM, the determination method of the turn-off time position at the first electrical cycle is also proposed. In this way, a sensorless operation scheme with adjustable turn on/off angle can be achieved without substantial computation. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed position estimation scheme.