• Title/Summary/Keyword: position and direction of objects

Search Result 64, Processing Time 0.028 seconds

Self-localization from the panoramic views for autonomous mobile robots

  • Jo, Kang-Hyun;Kang, Hyun-Deok;Kim, Tae-Ho;Inhyuk Moon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.49.6-49
    • /
    • 2001
  • This paper describes a self-localization method for the mobile robot using panoramic view images. A panoramic view image has the information of location of the objects from the viewer robot and direction between the objects at a position. Among the sequence of panoramic view images, the target objects in the image like traffic signs, facade of a building, road signs, etc. locate in the real world so that robot´s position and direction deliver to localize from his view. With the previously captured panoramic images, the method calculates the distance and direction of the region of interest, corresponds the regions between the sequences, and identifies the location in the world. To obtain the region, vertical edge line segments

  • PDF

Apparatus for determining the angular position, speed and/or direction of rotary objects

  • Lim, J.T.;Choi, D.H.;Lee, H.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.596-600
    • /
    • 1986
  • This paper describes a capacitively reading apparatus for determining the angular orientation, speed and/or direction of rotary objects such as shaft, dial hand, counter wheel and the like. The apparatus consists of sensing device and circuit accompanying with said sensing device. The sensing device is provided by arranging many stationary electrodes lying substantially on a surface of a stationary plane member and by arranging rotary electrode lying substantially on a surface of rotary objects to be monitored, in which said rotary electrode is in confronting relationship to some stationary electrodes so as to construct unique capacitors according to the angular position of rotary objects. The angular position of said rotary electrode is determined by sets of stationary electrodes which are in confronting relationship to rotary electrode. A carrier signal is generated by scanning device while scanning said stationarelectrodes, whose periods are in corresponding relationship to said stationary electrodes, respectively. The periods of carrier corresponding to the angular position of said rotary electrode is modulated by a modulation signal generated by detecting device according to said rotary electrode. This apparatus is applied to automatically monitor any kind of storage tank, as well as to automatically read the conventional utility meters such as Watthour meters, Gas meters, Water meters, etc..

  • PDF

Query Processing of Uncertainty Position Using Road Networks for Moving Object Databases (이동체 데이타베이스에서 도로 네트워크를 이용한 불확실 위치데이타의 질의처리)

  • Ahn Sung-Woo;An Kyung-Hwan;Bae Tae-Wook;Hong Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.283-298
    • /
    • 2006
  • The TPR-tree is the time-parameterized indexing scheme that supports the querying of the current and projected future positions of such moving objects by representing the locations of the objects with their coordinates and velocity vectors. If this index is, however, used in environments that directions and velocities of moving objects, such as vehicles, are very often changed, it increases the communication cost between the server and moving objects because moving objects report their position to the server frequently when the direction and the velocity exceed a threshold value. To preserve the communication cost regularly, there can be used a manner that moving objects report their position to the server periodically. However, the periodical position report also has a problem that lineal time functions of the TPR-tree do not guarantee the accuracy of the object's positions if moving objects change their direction and velocity between position reports. To solve this problem, we propose the query processing scheme and the data structure using road networks for predicting uncertainty positions of moving objects, which is reported to the server periodically. To reduce an uncertainty of the query region, the proposed scheme restricts moving directions of the object to directions of road network's segments. To remove an uncertainty of changing the velocity of objects, it puts a maximum speed of road network segments. Experimental results show that the proposed scheme improves the accuracy for predicting positions of moving objects than other schemes based on the TPR-tree.

A Study on the New Course Distance and the proper time to alter course (신침로거리와 전타시점에 관한 연구)

  • KIM, Min-Seok
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.4
    • /
    • pp.586-591
    • /
    • 2009
  • The marine traffic accidents go on increasing owing to the increment of marine traffic capacity, and the solutions about these matters are vigorously considering by many researchers. When the watch officer navigates to the narrow channel, bend or an area obscured by an intervening obstruction and around the harbour limit he must follow the planned track. The watch officer can safely navigate along the course laid down only when he alters his course in advance before the new course distance earlier than the course alternation point. If we call this point to be changed in advance a turning bearing, the turning bearing is decided according to the direction and the range from the clearing objects. The turning bearing helps the watch officer to determine whether the ship is at wheel-over position or not. The author in this paper suggest how to make and use a curve graph which is decided according to the direction and the distance from the clearing objects. If the watch officer utilize this curve graph he can judge swiftly and precisely whether his ship is at the wheel - over position or not.

Direction Relation Representation and Reasoning for Indoor Service Robots (실내 서비스 로봇을 위한 방향 관계 표현과 추론)

  • Lee, Seokjun;Kim, Jonghoon;Kim, Incheol
    • Journal of KIISE
    • /
    • v.45 no.3
    • /
    • pp.211-223
    • /
    • 2018
  • In this paper, we propose a robot-centered direction relation representation and the relevant reasoning methods for indoor service robots. Many conventional works on qualitative spatial reasoning, when deciding the relative direction relation of the target object, are based on the use of position information only. These reasoning methods may infer an incorrect direction relation of the target object relative to the robot, since they do not take into consideration the heading direction of the robot itself as the base object. In this paper, we present a robot-centered direction relation representation and the reasoning methods. When deciding the relative directional relationship of target objects based on the robot in an indoor environment, the proposed methods make use of the orientation information as well as the position information of the robot. The robot-centered reasoning methods are implemented by extending the existing cone-based, matrix-based, and hybrid methods which utilized only the position information of two objects. In various experiments with both the physical Turtlebot and the simulated one, the proposed representation and reasoning methods displayed their high performance and applicability.

Global Positioning of a Mobile Robot based on Color Omnidirectional Image Understanding (컬러 전방향 영상 이해에 기반한 이동 로봇의 위치 추정)

  • Kim, Tae-Gyun;Lee, Yeong-Jin;Jeong, Myeong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.6
    • /
    • pp.307-315
    • /
    • 2000
  • For the autonomy of a mobile robot it is first needed to know its position and orientation. Various methods of estimating the position of a robot have been developed. However, it is still difficult to localize the robot without any initial position or orientation. In this paper we present the method how to make the colored map and how to calculate the position and direction of a robot using the angle data of an omnidirectional image. The wall of the map is rendered with the corresponding color images and the color histograms of images and the coordinates of feature points are stored in the map. Then a mobile robot gets the color omnidirectional image at arbitrary position and orientation, segments it and recognizes objects by multiple color indexing. Using the information of recognized objects robot can have enough feature points and localize itself.

  • PDF

A Flexible Conveying System using Hybrid Control under Distributed Network

  • Yeamglin, Theera;Charoenseang, Siam
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.583-586
    • /
    • 2002
  • In this research, we propose a flexible conveying system (FCS) which consists of multiple arrays of cells. Each cell is a wheel driven by a two degree-of-freedom mechanism. The direction and velocity of cell are controlled based on the concept of hybrid control under a distributed network. Each cell has its own controller under a subsumption architecture for low-level control. A cell communicates with its four neighboring cells to manipulate n targeted object towards its desired position. The high-level control assigns a desired position and direction of the object to each cell. The path of each object is generated by many supporting cells. Moreover, the FCS can handle multiple objects simultaneously. To study the flexible conveying system, a GUI-based simulator of flexible conveying system is constructed. The simulated results show that the system can handle multiple objects independently and simultaneously under the proposed hybrid control architecture.

  • PDF

Envelope Generation for Freeform Objects (자유 곡면체의 엔벨롭 생성)

  • 송수창;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.89-100
    • /
    • 2001
  • Swept volume is the sweeping region of moving objects. It is used in various applications such as interference detection in assembly design, visualization of manipulator motions in robotics, simulation of the volume removal by a cutter in NC machining. The shape of swept volume is defined by the envelope, which is determined by the boundary of moving objects and its direction of motion. In order to implement the generation of swept volume, researchers have taken much effort to develop the techniques how to generate the envelope. However, their results are confined to envelope generated only in simple shape objects, such as polyhedra or quadric surfaces. This study provided the envelope generation algorithm of NURBS objects. Characteristic points were obtained by applying the geometric conditions of envelope to NURBS equations, and then characteristic curves were created by means of interpolating those points. Silhouette edges were determined in the following procedures. First, two adjacent surfaces which have the same edge were found from B-Rep data. Then, by taking the scalar product of velocity vector of a point on that edge with each normal vector on two surfaces, silhouette edges were discriminated. Finally, envelope was generated along moving direction in the form of ruled surfaces by using both the partial information between initial and final position of objects affecting envelope along with characteristic curves and silhouette edge. Since this developed algorithm can be applied not only to NURBS objects but also to their Boolean objects, it can be used effectively in various applications.

  • PDF

3D Visualization using Face Position and Direction Tracking (얼굴 위치와 방향 추적을 이용한 3차원 시각화)

  • Kim, Min-Ha;Kim, Ji-Hyun;Kim, Cheol-Ki;Cha, Eui-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.173-175
    • /
    • 2011
  • In this paper, we present an user interface which can show some 3D objects at various angles using tracked 3d head position and orientation. In implemented user interface, First, when user's head moves left/right (X-Axis) and up/down(Y-Axis), displayed objects are moved towards user's eyes using 3d head position. Second, when user's head rotate upon an X-Axis(pitch) or an Y-Axis(yaw), displayed objects are rotated by the same value as user's. The results of experiment from a variety of user's position and orientation show good accuracy and reactivity for 3d visualization.

  • PDF

A method of floor recognition by using ultrasonic sensors for mobile robot navigation (초음파 센서를 이용한 로봇의 실내 평면 구조 인식)

  • 고중협;김완주;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.125-132
    • /
    • 1993
  • When a mobile robot moves around autonomously without man-made landmarks, it is essential to recognize the placement of surrounding objects especially for current position estimation, obstacle avoidance, or homing into the work station. In this paper, we propose a novel approach to recognize the floor paln for indoor mobile robot navigation using ultrasonic time-of-flight method. We model the floor plan as a collection of polygonal plane objects and recognize the floor plan by locating edges and vertices of the objects. The direction is estimated by the patterns of transmission beam and reception sensitivity of the ultrasonic transducer, and the distance is estimated by the correlation detection method. We show the validity of the proposed approach through experimental results and discuss the resolution and the accuracy of the estimation of direction and distance.

  • PDF